Suppr超能文献

用于可穿戴癫痫发作检测的具有分布式聚合分类架构的低功耗低成本人工智能处理器

Low-Power and Low-Cost AI Processor With Distributed-Aggregated Classification Architecture for Wearable Epilepsy Seizure Detection.

作者信息

Zhang Qiang, Cui Mingyue, Liu Yue, Chen Weichong, Yu Zhiyi

出版信息

IEEE Trans Biomed Circuits Syst. 2025 Feb;19(1):28-39. doi: 10.1109/TBCAS.2024.3450896. Epub 2025 Feb 11.

Abstract

Wearable devices with continuous monitoring capabilities are critical for the daily detection of epileptic seizures, as they provide users with accurate and comprehensible analytical results. However, current AI classifiers rely on a two-stage recognition process for continuous monitoring, which only reduces operation time but remains challenged by the high cost of additional hardware. To address this problem, this article proposes a novel fusion architecture for AI processors, which enables event-triggered cross-paradigm integration and computation. Our method introduces a distributed-aggregated classification architecture (D-ACA) that facilitates the reuse of hardware resources across two-stage recognition, thereby obviating the need for standby hardware and enhancing energy efficiency. Integrating a non-encoding biomedical circuit method based on spiking neural networks (SNNs), the architecture eliminates encoded neurons at the hardware level, significantly optimizing energy consumption and hardware resource utilization. Additionally, we develop a configurable and highly flexible control method that supports various neuron modules, enabling continuous detection of epileptic seizures and activating high-precision recognition upon event detection. Finally, we implement the design on the Xilinx ZCU 102 FPGA board, where the AI processor achieves a high classification accuracy of 98.1% while consuming extremely low classification energy (3.73 J per classification).

摘要

具有连续监测功能的可穿戴设备对于癫痫发作的日常检测至关重要,因为它们能为用户提供准确且易于理解的分析结果。然而,当前的人工智能分类器在连续监测中依赖两阶段识别过程,这仅减少了操作时间,但仍面临额外硬件成本高昂的挑战。为解决此问题,本文提出了一种用于人工智能处理器的新型融合架构,该架构可实现事件触发的跨范式集成与计算。我们的方法引入了一种分布式聚合分类架构(D-ACA),它有助于在两阶段识别中复用硬件资源,从而无需备用硬件并提高能源效率。该架构集成了基于脉冲神经网络(SNN)的非编码生物医学电路方法,在硬件层面消除了编码神经元,显著优化了能耗和硬件资源利用率。此外,我们开发了一种可配置且高度灵活的控制方法,该方法支持各种神经元模块,能够持续检测癫痫发作并在事件检测时激活高精度识别。最后,我们在赛灵思ZCU 102 FPGA开发板上实现了该设计,在此人工智能处理器实现了98.1%的高分类准确率,同时分类能耗极低(每次分类3.73焦耳)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验