Suppr超能文献

超强弥散加权 MRI 显示运动障碍患者小脑灰质异常。

Ultra-strong diffusion-weighted MRI reveals cerebellar grey matter abnormalities in movement disorders.

机构信息

Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, UK; University Medical Center Utrecht, Utrecht, The Netherlands.

Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, Victoria, Australia.

出版信息

Neuroimage Clin. 2023;38:103419. doi: 10.1016/j.nicl.2023.103419. Epub 2023 Apr 28.

Abstract

Structural brain MRI has proven invaluable in understanding movement disorder pathophysiology. However, most work has focused on grey/white matter volumetric (macrostructural) and white matter microstructural effects, limiting understanding of frequently implicated grey matter microstructural differences. Using ultra-strong spherical tensor encoding diffusion-weighted MRI, a persistent MRI signal was seen in healthy cerebellar grey matter even at high diffusion-weightings (b ​≥ 10,000 s/mm). Quantifying the proportion of this signal (denoted f), previously ascertained to originate from inside small spherical spaces, provides a potential proxy for cell body density. In this work, this approach was applied for the first time to a clinical cohort, including patients with diagnosed movement disorders in which the cerebellum has been implicated in symptom pathophysiology. Five control participants (control group 1, median age 24.5 years (20-39 years), imaged at two timepoints, demonstrated consistency in measurement of all three measures - MD (Mean Diffusivity) f, and D (dot diffusivity)- with intraclass correlation coefficients (ICC) of 0.98, 0.86 and 0.76, respectively. Comparison with an older control group (control group 2 (n = 5), median age 51 years (43-58 years)) found no significant differences, neither with morphometric nor microstructural (MD (p = 0.36), f (p = 0.17) and D (p = 0.22)) measures. The movement disorder cohort (Parkinson's Disease, n = 5, dystonia, n = 5. Spinocerebellar Ataxia 6, n = 5) when compared to the age-matched control cohort (Control Group 2) identified significantly lower MD (p < 0.0001 and p < 0.0001) and higher f values (p < 0.0001 and p < 0.0001) in SCA6 and dystonia cohorts respectively. Lobar division of the cerebellum found these same differences in the superior and inferior posterior lobes, while no differences were seen in either the anterior lobes or with D measurements. In contrast to more conventional measures from diffusion tensor imaging, this framework provides enhanced specificity to differences in restricted spherical spaces in grey matter (including small cells) by eliminating signals from cerebrospinal fluid and axons. In the context of human and animal histopathology studies, these findings potentially implicate the cerebellar Purkinje and granule cells as contributors to the observed signal differences, with both cell types having been implicated in several neurological disorders through both postmortem and animal model studies. This novel microstructural imaging approach shows promise for improving movement disorder diagnosis, prognosis, and treatment.

摘要

结构性脑 MRI 在理解运动障碍病理生理学方面已被证明具有不可估量的价值。然而,大多数研究都集中在灰质/白质容积(宏观结构)和白质微观结构效应上,限制了对经常涉及的灰质微观结构差异的理解。使用超强球形张量编码扩散加权 MRI,即使在高扩散权重(b≥10,000 s/mm)下,健康小脑灰质中也可以看到持续的 MRI 信号。量化该信号的比例(表示为 f),先前确定其源自小球形空间内部,可作为细胞体密度的潜在替代物。在这项工作中,该方法首次应用于临床队列,包括已被诊断为运动障碍的患者,其中小脑已被认为与症状病理生理学有关。五名对照参与者(对照组 1,中位年龄 24.5 岁(20-39 岁),在两个时间点进行成像,所有三个测量值的测量值 - 平均弥散度(MD)、f 和 D - 的内类相关系数(ICC)分别为 0.98、0.86 和 0.76。与年龄较大的对照组(对照组 2(n=5),中位年龄 51 岁(43-58 岁))相比,没有发现显著差异,无论是形态计量学还是微观结构(MD(p=0.36)、f(p=0.17)和 D(p=0.22))测量值。与年龄匹配的对照组(对照组 2)相比,运动障碍队列(帕金森病,n=5,肌张力障碍,n=5. 脊髓小脑共济失调 6,n=5)分别确定 SCA6 和肌张力障碍队列中 MD 显著降低(p<0.0001 和 p<0.0001)和 f 值升高(p<0.0001 和 p<0.0001)。小脑的叶部划分在前部和后部都发现了相同的差异,而在前部或 D 测量中没有发现差异。与来自扩散张量成像的更常规测量值不同,该框架通过消除脑脊液和轴突的信号,为灰质(包括小细胞)中受限的球形空间的差异提供了更高的特异性。在人类和动物组织病理学研究的背景下,这些发现可能暗示小脑浦肯野细胞和颗粒细胞是观察到的信号差异的贡献者,这两种细胞类型都通过尸检和动物模型研究与多种神经疾病有关。这种新的微观结构成像方法有望改善运动障碍的诊断、预后和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1808/10199248/08c2e865ad42/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验