Suppr超能文献

双量子级联激光器用于光声光谱法的无创葡萄糖检测。

Dual quantum cascade lasers for noninvasive glucose detection using photoacoustic spectroscopy.

机构信息

Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

出版信息

Sci Rep. 2023 May 16;13(1):7927. doi: 10.1038/s41598-023-34912-3.

Abstract

The combination of mid-infrared and photoacoustic spectroscopy has shown promising developments as a substitute for invasive glucose detection technology. A dual single-wavelength quantum cascade laser system has been developed using photoacoustic spectroscopy for noninvasive glucose monitoring. Biomedical skin phantoms with similar properties to human skin have been prepared with blood components at different glucose concentrations as test models for the setup. The detection sensitivity of the system has been improved to ± 12.5 mg/dL in the hyperglycemia blood glucose ranges. An ensemble machine learning classifier has been developed to predict the glucose level in the presence of blood components. The model, which was trained with 72,360 unprocessed datasets, achieved a 96.7% prediction accuracy with 100% of the predicted data located in zones A and B of Clarke's error grid analysis. These findings fulfill both the US Food and Drug Administration and Health Canada requirements for glucose monitors.

摘要

中红外和光声光谱学的结合已显示出作为替代侵入性葡萄糖检测技术的有前途的发展。已经开发出一种使用光声光谱学的双单波长量子级联激光系统,用于非侵入性葡萄糖监测。已经使用具有与人皮肤相似特性的生物医学皮肤仿体和不同葡萄糖浓度的血液成分作为设置的测试模型。该系统的检测灵敏度已提高到± 12.5 mg/dL 的高血糖血糖范围。已经开发出一种集成机器学习分类器来预测存在血液成分时的血糖水平。该模型使用 72360 个未处理的数据集进行训练,在 Clarke 的误差网格分析的 A 和 B 区域中,预测数据的 100%位于预测精度达到 96.7%。这些发现满足了美国食品和药物管理局和加拿大卫生部对葡萄糖监测器的要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aac/10188558/9ae1e994b9f9/41598_2023_34912_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验