Suppr超能文献

模拟家畜疾病流行病学中的接触网络:系统评价。

Simulating contact networks for livestock disease epidemiology: a systematic review.

机构信息

Communicable Diseases Policy Research Group, Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.

Veterinary Epidemiology, Economics and Public Health Group, Pathobiology and Population Sciences Department, Royal Veterinary College, London AL9 7TA, UK.

出版信息

J R Soc Interface. 2023 May;20(202):20220890. doi: 10.1098/rsif.2022.0890. Epub 2023 May 17.

Abstract

Contact structure among livestock populations influences the transmission of infectious agents among them. Models simulating realistic contact networks therefore have important applications for generating insights relevant to livestock diseases. This systematic review identifies and compares such models, their applications, data sources and how their validity was assessed. From 52 publications, 37 models were identified comprising seven model frameworks. These included mathematical models ( = 8; including generalized random graphs, scale-free, Watts-Strogatz and spatial models), agent-based models ( = 8), radiation models ( = 1) (collectively, considered 'mechanistic'), gravity models ( = 4), exponential random graph models ( = 9), other forms of statistical model ( = 6) (statistical) and random forests ( = 1) (machine learning). Overall, nearly half of the models were used as inputs for network-based epidemiological models. In all models, edges represented livestock movements, sometimes alongside other forms of contact. Statistical models were often applied to infer factors associated with network formation ( = 12). Mechanistic models were commonly applied to assess the interaction between network structure and disease dissemination ( = 6). Mechanistic, statistical and machine learning models were all applied to generate networks given limited data ( = 13). There was considerable variation in the approaches used for model validation. Finally, we discuss the relative strengths and weaknesses of model frameworks in different use cases.

摘要

动物种群之间的接触结构会影响它们之间传染病原体的传播。因此,模拟真实接触网络的模型对于产生与牲畜疾病相关的见解具有重要的应用价值。本系统综述确定并比较了这些模型、它们的应用、数据来源以及如何评估它们的有效性。从 52 篇出版物中,确定了 37 个模型,包括七个模型框架。这些模型包括数学模型(=8;包括广义随机图、无标度、Watts-Strogatz 和空间模型)、基于代理的模型(=8)、辐射模型(=1)(统称为“机械模型”)、重力模型(=4)、指数随机图模型(=9)、其他形式的统计模型(=6)(统计)和随机森林(=1)(机器学习)。总体而言,近一半的模型被用作基于网络的流行病学模型的输入。在所有模型中,边代表着动物的移动,有时还伴随着其他形式的接触。统计模型通常用于推断与网络形成相关的因素(=12)。机械模型通常用于评估网络结构与疾病传播之间的相互作用(=6)。机械模型、统计模型和机器学习模型都被应用于在有限数据的情况下生成网络(=13)。模型验证所使用的方法存在很大差异。最后,我们讨论了不同用例中模型框架的相对优势和劣势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e9/10189310/6cb4d0807619/rsif20220890f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验