Suppr超能文献

由芳香分子物理交联的聚酰亚胺在200°C时表现出超高能量密度。

Polyimides Physically Crosslinked by Aromatic Molecules Exhibit Ultrahigh Energy Density at 200 °C.

作者信息

Yang Minzheng, Zhou Le, Li Xin, Ren Weibin, Shen Yang

机构信息

School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China.

出版信息

Adv Mater. 2023 Sep;35(35):e2302392. doi: 10.1002/adma.202302392. Epub 2023 Jul 19.

Abstract

Polymer dielectrics possess significant advantages in electrostatic energy storage applications, such as high breakdown strength (E ) and efficiency (η), while their discharged energy density (U ) at high temperature is limited by the decrease in E and η. Several strategies including introducing inorganic components and crosslinking have been investigated to improve the U of polymer dielectrics, but new issues will be encountered, e.g., the sacrifice of flexibility, the degradation of the interfacial insulating property and the complex preparation process. In this work, 3D rigid aromatic molecules are introduced into aromatic polyimides to form physical crosslinking networks through electrostatic interactions between their oppositely charged phenyl groups. The dense physical crosslinking networks strengthen the polyimides to boost the E , and the aromatic molecules trap the charge carriers to suppress the loss, allowing the strategy to combine the advantages of inorganic incorporation and crosslinking. This study demonstrates that this strategy is well applicable to a number of representative aromatic polyimides, and ultrahigh U of 8.05 J cm (150 °C) and 5.12 J cm (200 °C) is achieved. Furthermore, the all-organic composites exhibit stable performances during ultralong 10 charge-discharge cycles in harsh environments (500 MV m and 200 °C) and prospects for large-scale preparation.

摘要

聚合物电介质在静电储能应用中具有显著优势,如高击穿强度(E)和效率(η),然而其在高温下的放电能量密度(U)受到E和η降低的限制。人们已经研究了包括引入无机组分和交联在内的几种策略来提高聚合物电介质的U,但会遇到新问题,例如柔韧性的牺牲、界面绝缘性能的退化以及复杂的制备过程。在这项工作中,将三维刚性芳香族分子引入芳香族聚酰亚胺中,通过其带相反电荷的苯基之间的静电相互作用形成物理交联网络。致密的物理交联网络增强了聚酰亚胺以提高E,并且芳香族分子捕获电荷载流子以抑制损耗,使得该策略能够兼具无机掺杂和交联的优点。这项研究表明该策略适用于多种代表性芳香族聚酰亚胺,并实现了8.05 J cm⁻³(150℃)和5.12 J cm⁻³(200℃)的超高U。此外,全有机复合材料在恶劣环境(500 MV m⁻¹和200℃)下的超长10次充放电循环中表现出稳定的性能以及大规模制备的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验