Pan Zizhao, Li Li, Jin Fei, Dong Jiufeng, Niu Yujuan, Sun Liang, Tan Li, Liu Yuqi, Wang Qing, Wang Hong
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
Adv Sci (Weinh). 2024 Oct;11(40):e2405730. doi: 10.1002/advs.202405730. Epub 2024 Aug 29.
Polymer dielectrics that perform efficiently under harsh electrification conditions are critical elements of advanced electronic and power systems. However, developing polymer dielectrics capable of reliably withstanding harsh temperatures and electric fields remains a fundamental challenge, requiring a delicate balance in dielectric constant (K), breakdown strength (E), and thermal parameters. Here, amide crosslinking networks into cyano polymers is introduced, forming asymmetric dipole pairs with differing dipole moments. This strategy weakens the original electrostatic interactions between dipoles, thereby reducing the dipole orientation barriers of cyano groups, achieving dipole activation while suppressing polarization losses. The resulting styrene-acrylonitrile/crosslinking styrene-maleic anhydride (SAN/CSMA) blends exhibit a K of 4.35 and an E of 670 MV m simultaneously at 120 °C, and ultrahigh discharged energy densities (U) with 90% efficiency of 8.6 and 7.4 J cm at 120 and 150 °C are achieved, respectively, more than ten times that of the original dielectric at the same conditions. The SAN/CSMA blends show excellent cyclic stability in harsh conditions. Combining the results with SAN/CSMA and ABS (acrylonitrile-butadiene-styrene copolymer)/CSMA blends, it is demonstrated that this novel strategy can meet the demands of high-performing dielectric polymers at elevated temperatures.
在苛刻的带电条件下高效运行的聚合物电介质是先进电子和电力系统的关键元件。然而,开发能够可靠承受苛刻温度和电场的聚合物电介质仍然是一项根本性挑战,这需要在介电常数(K)、击穿强度(E)和热参数之间实现微妙的平衡。在此,将酰胺交联网络引入到氰基聚合物中,形成具有不同偶极矩的不对称偶极对。这种策略削弱了偶极之间原有的静电相互作用,从而降低了氰基的偶极取向势垒,在抑制极化损耗的同时实现了偶极激活。所得的苯乙烯 - 丙烯腈/交联苯乙烯 - 马来酸酐(SAN/CSMA)共混物在120°C时同时表现出4.35的K值和670 MV m的E值,并且在120°C和150°C时分别实现了8.6和7.4 J cm的90%效率的超高放电能量密度(U),是相同条件下原始电介质的十多倍。SAN/CSMA共混物在苛刻条件下表现出优异的循环稳定性。将SAN/CSMA与ABS(丙烯腈 - 丁二烯 - 苯乙烯共聚物)/CSMA共混物的结果相结合,表明这种新策略能够满足高温下高性能介电聚合物的需求。