Suppr超能文献

HISS:基于 Snakemake 的工作流程,用于执行 SMRT-RenSeq 组装、AgRenSeq 和 dRenSeq,以发现新的植物抗病基因。

HISS: Snakemake-based workflows for performing SMRT-RenSeq assembly, AgRenSeq and dRenSeq for the discovery of novel plant disease resistance genes.

机构信息

Department of Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, DD2 5DA, UK.

School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK.

出版信息

BMC Bioinformatics. 2023 May 17;24(1):204. doi: 10.1186/s12859-023-05335-8.

Abstract

BACKGROUND

In the ten years since the initial publication of the RenSeq protocol, the method has proved to be a powerful tool for studying disease resistance in plants and providing target genes for breeding programmes. Since the initial publication of the methodology, it has continued to be developed as new technologies have become available and the increased availability of computing power has made new bioinformatic approaches possible. Most recently, this has included the development of a k-mer based association genetics approach, the use of PacBio HiFi data, and graphical genotyping with diagnostic RenSeq. However, there is not yet a unified workflow available and researchers must instead configure approaches from various sources themselves. This makes reproducibility and version control a challenge and limits the ability to perform these analyses to those with bioinformatics expertise.

RESULTS

Here we present HISS, consisting of three workflows which take a user from raw RenSeq reads to the identification of candidates for disease resistance genes. These workflows conduct the assembly of enriched HiFi reads from an accession with the resistance phenotype of interest. A panel of accessions both possessing and lacking the resistance are then used in an association genetics approach (AgRenSeq) to identify contigs positively associated with the resistance phenotype. Candidate genes are then identified on these contigs and assessed for their presence or absence in the panel with a graphical genotyping approach that uses dRenSeq. These workflows are implemented via Snakemake, a python-based workflow manager. Software dependencies are either shipped with the release or handled with conda. All code is freely available and is distributed under the GNU GPL-3.0 license.

CONCLUSIONS

HISS provides a user-friendly, portable, and easily customised approach for identifying novel disease resistance genes in plants. It is easily installed with all dependencies handled internally or shipped with the release and represents a significant improvement in the ease of use of these bioinformatics analyses.

摘要

背景

自 RenSeq 方案最初发表以来的十年中,该方法已被证明是研究植物抗病性的有力工具,并为育种计划提供了目标基因。自该方法最初发表以来,随着新技术的出现以及计算能力的提高,它不断得到发展,从而使新的生物信息学方法成为可能。最近,这包括开发基于 k-mer 的关联遗传学方法、使用 PacBio HiFi 数据以及使用 RenSeq 进行图形基因分型。但是,目前尚无统一的工作流程,研究人员必须自己配置来自各种来源的方法。这使得可重复性和版本控制成为挑战,并限制了具有生物信息学专业知识的人员执行这些分析的能力。

结果

在这里,我们提出了 HISS,它由三个工作流程组成,可使用户从原始 RenSeq 读取到鉴定抗病基因候选物。这些工作流程执行组装具有感兴趣抗性表型的访问序列的富集 HiFi 读取。然后,使用包含和不包含抗性的一组访问序列,使用关联遗传学方法(AgRenSeq)来鉴定与抗性表型呈正相关的重叠群。然后在这些重叠群上鉴定候选基因,并使用图形基因分型方法(dRenSeq)评估它们在包含或不包含该面板的面板中的存在或缺失情况。这些工作流程通过 Snakemake 实现,Snakemake 是一个基于 Python 的工作流程管理器。软件依赖项要么随发行版一起提供,要么通过 conda 处理。所有代码均可免费获得,并根据 GNU GPL-3.0 许可证分发。

结论

HISS 为在植物中鉴定新的抗病基因提供了一种用户友好、便携且易于定制的方法。它可以轻松安装,所有依赖项都由内部处理或随发行版一起提供,这代表着这些生物信息学分析的易用性得到了重大改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5807/10193785/44a7c0205746/12859_2023_5335_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验