Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
Dalton Trans. 2023 Jun 6;52(22):7635-7645. doi: 10.1039/d3dt00987d.
We report the synthesis and characterisation of a series of M(IV) substituted cyclopentadienyl hypersilanide complexes of the general formula [M(Cp){Si(SiMe)}(X)] (M = Hf, Th; Cp = Cp', {CH(SiMe)} or Cp'', {CH(SiMe)-1,3}; X = Cl, CH). The separate salt metathesis reactions of [M(Cp)(Cl)] (M = Zr or Hf, Cp = Cp'; M = Hf or Th, Cp = Cp'') with equimolar K{Si(SiMe)} gave the respective mono-silanide complexes [M(Cp'){Si(SiMe)}(Cl)] (M = Zr, 1; Hf, 2), [Hf(Cp'')(Cp'){Si(SiMe)}(Cl)] (3) and [Th(Cp''){Si(SiMe)}(Cl)] (4), with only a trace amount of 3 presumably formed silatropic and sigmatropic shifts; the synthesis of 1 from [Zr(Cp')(Cl)] and Li{Si(SiMe)} has been reported previously. The salt elimination reaction of 2 with one equivalent of allylmagnesium chloride gave [Hf(Cp'){Si(SiMe)}(η-CH)] (5), whilst the corresponding reaction of 2 with equimolar benzyl potassium yielded [Hf(Cp')(CHPh)] (6) together with a mixture of other products, with elimination of both KCl and K{Si(SiMe)}. Attempts to prepare isolated [M(Cp){Si(SiMe)}] cations from 4 or 5 by standard abstraction methodologies were unsuccessful. The reduction of 4 with KC gave the known Th(III) complex, [Th(Cp'')]. Complexes 2-6 were characterised by single crystal XRD, whilst 2, 4 and 5 were additionally characterised by H, C{H} and Si{H} NMR spectroscopy, ATR-IR spectroscopy and elemental analysis. In order to probe differences in M(IV)-Si bonds for d- and f-block metals we studied the electronic structures of 1-5 by density functional theory calculations, showing M-Si bonds of similar covalency for Zr(IV) and Hf(IV), and less covalent M-Si bonds for Th(IV).
我们报告了一系列 M(IV)取代的茂基高硅烷配合物的合成与表征,其通式为M(Cp){Si(SiMe)}(M = Hf, Th; Cp = Cp', {CH(SiMe)}或 Cp'', {CH(SiMe)-1,3}; X = Cl, CH)。通过[M(Cp)(Cl)] (M = Zr 或 Hf, Cp = Cp'; M = Hf 或 Th, Cp = Cp'')与等摩尔 K{Si(SiMe)}的盐复分解反应,分别得到相应的单硅烷配合物[M(Cp'){Si(SiMe)}(Cl)] (M = Zr, 1; Hf, 2)、[Hf(Cp'')(Cp'){Si(SiMe)}(Cl)] (3)和[Th(Cp''){Si(SiMe)}(Cl)] (4),其中只有痕量的 3 可能是通过硅迁移和西格玛迁移形成的;此前已经报道过从[Zr(Cp')(Cl)]和 Li{Si(SiMe)}合成 1 的方法。2 与一当量烯丙基氯化镁的盐消除反应得到[Hf(Cp'){Si(SiMe)}(η-CH)] (5),而 2 与等摩尔苄基钾的相应反应则得到[Hf(Cp')(CHPh)] (6)以及其他产物的混合物,同时消除了 KCl 和 K{Si(SiMe)}。尝试通过标准的提取方法从 4 或 5 中制备孤立的[M(Cp){Si(SiMe)}]阳离子均未成功。用 KC 还原 4 得到已知的 Th(III)配合物[Th(Cp'')]。2-6 均通过单晶 XRD 进行了表征,而 2、4 和 5 还通过 H、C{H}和 Si{H}NMR 光谱、ATR-IR 光谱和元素分析进行了表征。为了探究 d 区和 f 区金属的 M(IV)-Si 键的差异,我们通过密度泛函理论计算研究了 1-5 的电子结构,结果表明 Zr(IV)和 Hf(IV)的 M-Si 键具有相似的共价性,而 Th(IV)的 M-Si 键具有较低的共价性。