Suppr超能文献

通过矿物组合分析预测新的矿物赋存情况和行星类比环境。

Predicting new mineral occurrences and planetary analog environments via mineral association analysis.

作者信息

Morrison Shaunna M, Prabhu Anirudh, Eleish Ahmed, Hazen Robert M, Golden Joshua J, Downs Robert T, Perry Samuel, Burns Peter C, Ralph Jolyon, Fox Peter

机构信息

Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Rd NW, Washington, DC 20015, USA.

Tetherless World Constellation, Rensselaer Polytechnic Institute (RPI), 110 Eighth Street, Troy, NY 12180, USA.

出版信息

PNAS Nexus. 2023 May 16;2(5):pgad110. doi: 10.1093/pnasnexus/pgad110. eCollection 2023 May.

Abstract

The locations of minerals and mineral-forming environments, despite being of great scientific importance and economic interest, are often difficult to predict due to the complex nature of natural systems. In this work, we embrace the complexity and inherent "messiness" of our planet's intertwined geological, chemical, and biological systems by employing machine learning to characterize patterns embedded in the multidimensionality of mineral occurrence and associations. These patterns are a product of, and therefore offer insight into, the Earth's dynamic evolutionary history. Mineral association analysis quantifies high-dimensional multicorrelations in mineral localities across the globe, enabling the identification of previously unknown mineral occurrences, as well as mineral assemblages and their associated paragenetic modes. In this study, we have predicted (i) the previously unknown mineral inventory of the Mars analogue site, Tecopa Basin, (ii) new locations of uranium minerals, particularly those important to understanding the oxidation-hydration history of uraninite, (iii) new deposits of critical minerals, specifically rare earth element (REE)- and Li-bearing phases, and (iv) changes in mineralization and mineral associations through deep time, including a discussion of possible biases in mineralogical data and sampling; furthermore, we have (v) tested and confirmed several of these mineral occurrence predictions in nature, thereby providing ground truth of the predictive method. Mineral association analysis is a predictive method that will enhance our understanding of mineralization and mineralizing environments on Earth, across our solar system, and through deep time.

摘要

矿物质的位置和矿物形成环境尽管具有重大的科学意义和经济价值,但由于自然系统的复杂性,往往难以预测。在这项工作中,我们通过运用机器学习来刻画矿物赋存和关联的多维性中所蕴含的模式,欣然接受我们星球相互交织的地质、化学和生物系统的复杂性以及固有的“杂乱性”。这些模式是地球动态演化历史的产物,因此能为其提供洞见。矿物关联分析量化了全球各地矿点中的高维多重相关性,有助于识别先前未知的矿物赋存情况、矿物组合及其相关的共生模式。在本研究中,我们预测了:(i)火星类比地点特科帕盆地先前未知的矿物储量;(ii)铀矿物的新位置,特别是那些对于理解晶质铀矿的氧化 - 水合历史很重要的位置;(iii)关键矿物的新矿床,特别是含稀土元素(REE)和锂的矿相;以及(iv)地质历史时期矿化作用和矿物关联的变化,包括对矿物学数据和采样中可能存在的偏差的讨论;此外,我们(v)在自然界中测试并证实了其中一些矿物赋存预测,从而为预测方法提供了实际验证。矿物关联分析是一种预测方法,将增进我们对地球上、整个太阳系以及地质历史时期矿化作用和矿化环境的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a4/10187660/ccfe10d891ae/pgad110f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验