Suppr超能文献

显生宙海洋生物多样性与环境变化的时间和周期性。

Timing and periodicity of Phanerozoic marine biodiversity and environmental change.

机构信息

Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.

Department of Earth Sciences, University College London, London, WC1E 6BT, UK.

出版信息

Sci Rep. 2019 Apr 16;9(1):6116. doi: 10.1038/s41598-019-42538-7.

Abstract

We examine how the history of Phanerozoic marine biodiversity relates to environmental change. Our focus is on North America, which has a relatively densely sampled history. By transforming time series into the time-frequency domain using wavelets, histories of biodiversity are shown to be similar to sea level, temperature and oceanic chemistry at multiple timescales. Fluctuations in sea level play an important role in driving Phanerozoic biodiversity at timescales >50 Myr, and during finite intervals at shorter periods. Subsampled and transformed marine genera time series reinforce the idea that Permian-Triassic, Triassic-Jurassic, and Cretaceous-Paleogene mass extinctions were geologically rapid, whereas the Ordovician-Silurian and Late Devonian 'events' were longer lived. High cross wavelet power indicates that biodiversity is most similar to environmental variables (sea level, plate fragmentation, δO, δC, δS and Sr/Sr) at periods >200 Myr, when they are broadly in phase (i.e. no time lag). They are also similar at shorter periods for finite durations of time (e.g. during some mass extinctions). These results suggest that long timescale processes (e.g. plate kinematics) are the primary drivers of biodiversity, whilst processes with significant variability at shorter periods (e.g. glacio-eustasy, continental uplift and erosion, volcanism, asteroid impact) play a moderating role. Wavelet transforms are a useful approach for isolating information about times and frequencies of biological activity and commonalities with environmental variables.

摘要

我们研究了显生宙海洋生物多样性的历史与环境变化的关系。我们的重点是北美的情况,因为这里有相对密集的采样历史。通过使用小波将时间序列转换到时频域,我们发现生物多样性的历史与海平面、温度和海洋化学在多个时间尺度上具有相似性。在 >50 Myr 的时间尺度上,海平面的波动在驱动显生宙生物多样性方面起着重要作用,而在较短的时间间隔内,波动则更为有限。经过子采样和转换的海洋属时间序列进一步强化了这样的观点,即二叠纪-三叠纪、三叠纪-侏罗纪和白垩纪-古近纪大灭绝在地质上是迅速发生的,而奥陶纪-志留纪和晚泥盆世“事件”则持续时间更长。高交叉小波功率表明,生物多样性与环境变量(海平面、板块分裂、δO、δC、δS 和 Sr/Sr)在 >200 Myr 的时间尺度上最为相似,此时它们大体上同相(即没有时间滞后)。在较短的时间间隔内,它们也在有限的时间内相似(例如,在某些大灭绝期间)。这些结果表明,长时间尺度的过程(例如板块运动学)是生物多样性的主要驱动因素,而在较短时间间隔内具有显著可变性的过程(例如冰川-海平面变化、大陆隆升和侵蚀、火山活动、小行星撞击)则起着调节作用。小波变换是一种有用的方法,可以分离关于生物活动的时间和频率的信息,以及与环境变量的共同之处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e849/6467882/d9f8858a7e50/41598_2019_42538_Fig1_HTML.jpg

相似文献

1
Timing and periodicity of Phanerozoic marine biodiversity and environmental change.
Sci Rep. 2019 Apr 16;9(1):6116. doi: 10.1038/s41598-019-42538-7.
2
Theory and classification of mass extinction causation.
Natl Sci Rev. 2023 Sep 8;11(1):nwad237. doi: 10.1093/nsr/nwad237. eCollection 2024 Jan.
3
4
Quantifying ecological impacts of mass extinctions with network analysis of fossil communities.
Proc Natl Acad Sci U S A. 2018 May 15;115(20):5217-5222. doi: 10.1073/pnas.1719976115. Epub 2018 Apr 23.
5
Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
Zootaxa. 2020 Nov 16;4878(3):zootaxa.4878.3.2. doi: 10.11646/zootaxa.4878.3.2.
6
The evolutionary dynamics of the early Palaeozoic marine biodiversity accumulation.
Proc Biol Sci. 2019 Aug 28;286(1909):20191634. doi: 10.1098/rspb.2019.1634.
7
Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions.
Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7207-7213. doi: 10.1073/pnas.1821123116. Epub 2019 Mar 25.
8
A scale of greatness and causal classification of mass extinctions: implications for mechanisms.
Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13736-40. doi: 10.1073/pnas.0805482105. Epub 2008 Sep 8.
9
Phanerozoic Earth system evolution and marine biodiversity.
Science. 2011 Nov 25;334(6059):1121-4. doi: 10.1126/science.1210695.

引用本文的文献

1
Late Cretaceous ammonoids show that drivers of diversification are regionally heterogeneous.
Nat Commun. 2024 Jun 27;15(1):5382. doi: 10.1038/s41467-024-49462-z.
2
Why the Early Paleozoic was intrinsically prone to marine extinction.
Sci Adv. 2023 Sep;9(35):eadg7679. doi: 10.1126/sciadv.adg7679. Epub 2023 Aug 30.
3
Earth's interior dynamics drive marine fossil diversity cycles of tens of millions of years.
Proc Natl Acad Sci U S A. 2023 Jul 18;120(29):e2221149120. doi: 10.1073/pnas.2221149120. Epub 2023 Jul 10.
4
Predicting new mineral occurrences and planetary analog environments via mineral association analysis.
PNAS Nexus. 2023 May 16;2(5):pgad110. doi: 10.1093/pnasnexus/pgad110. eCollection 2023 May.
5
Climatic and tectonic drivers shaped the tropical distribution of coral reefs.
Nat Commun. 2022 Jun 14;13(1):3120. doi: 10.1038/s41467-022-30793-8.
6
Terrestrial forcing of marine biodiversification.
Sci Rep. 2022 May 18;12(1):8309. doi: 10.1038/s41598-022-12384-1.
7
Evolution and extinction can occur rapidly: a modeling approach.
PeerJ. 2021 Apr 13;9:e11130. doi: 10.7717/peerj.11130. eCollection 2021.
8

本文引用的文献

1
Trophic and tectonic limits to the global increase of marine invertebrate diversity.
Sci Rep. 2017 Nov 21;7(1):15969. doi: 10.1038/s41598-017-16257-w.
2
Plate tectonic regulation of global marine animal diversity.
Proc Natl Acad Sci U S A. 2017 May 30;114(22):5653-5658. doi: 10.1073/pnas.1702297114. Epub 2017 May 15.
3
The non-uniformity of fossil preservation.
Philos Trans R Soc Lond B Biol Sci. 2016 Jul 19;371(1699). doi: 10.1098/rstb.2015.0130.
4
The challenges to inferring the regulators of biodiversity in deep time.
Philos Trans R Soc Lond B Biol Sci. 2016 Apr 5;371(1691):20150216. doi: 10.1098/rstb.2015.0216.
5
The role of biotic forces in driving macroevolution: beyond the Red Queen.
Proc Biol Sci. 2015 Jun 7;282(1808):20150186. doi: 10.1098/rspb.2015.0186.
6
Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province.
Science. 2013 May 24;340(6135):941-5. doi: 10.1126/science.1234204. Epub 2013 Mar 21.
7
Biodiversity tracks temperature over time.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15141-5. doi: 10.1073/pnas.1200844109. Epub 2012 Sep 4.
8
Phanerozoic Earth system evolution and marine biodiversity.
Science. 2011 Nov 25;334(6059):1121-4. doi: 10.1126/science.1210695.
9
Calibrating the end-Permian mass extinction.
Science. 2011 Dec 9;334(6061):1367-72. doi: 10.1126/science.1213454. Epub 2011 Nov 17.
10
Interplay between changing climate and species' ecology drives macroevolutionary dynamics.
Science. 2011 Apr 15;332(6027):349-51. doi: 10.1126/science.1203060.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验