Suppr超能文献

FAIL-T(甲胎蛋白、谷草转氨酶、肿瘤大小、谷丙转氨酶和肿瘤数量):一种用于预测不适合经动脉化疗栓塞术(TACE)的中期肝癌患者的模型。

FAIL-T (AFP, AST, tumor sIze, ALT, and Tumor number): a model to predict intermediate-stage HCC patients who are not good candidates for TACE.

作者信息

Kaewdech Apichat, Sripongpun Pimsiri, Assawasuwannakit Suraphon, Wetwittayakhlang Panu, Jandee Sawangpong, Chamroonkul Naichaya, Piratvisuth Teerha

机构信息

Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.

Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand.

出版信息

Front Med (Lausanne). 2023 May 2;10:1077842. doi: 10.3389/fmed.2023.1077842. eCollection 2023.

Abstract

BACKGROUND

Patients with un-resectable hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) are a diverse group with varying overall survival (OS). Despite the availability of several scoring systems for predicting OS, one of the unsolved problems is identifying patients who might not benefit from TACE. We aim to develop and validate a model for identifying HCC patients who would survive <6 months after their first TACE.

METHODS

Patients with un-resectable HCC, BCLC stage 0-B, who received TACE as their first and only treatment between 2007 and 2020 were included in this study. Before the first TACE, demographic data, laboratory data, and tumor characteristics were obtained. Eligible patients were randomly allocated in a 2:1 ratio to training and validation sets. The former was used for model development using stepwise multivariate logistic regression, and the model was validated in the latter set.

RESULTS

A total of 317 patients were included in the study (210 for the training set and 107 for the validation set). The baseline characteristics of the two sets were comparable. The final model (FAIL-T) included AFP, AST, tumor sIze, ALT, and Tumor number. The FAIL-T model yielded AUROCs of 0.855 and 0.806 for predicting 6-month mortality after TACE in the training and validation sets, respectively, while the "six-and-twelve" score showed AUROCs of 0.751 ( < 0.001) in the training set and 0.729 ( = 0.099) in the validation sets for the same purpose.

CONCLUSION

The final model is useful for predicting 6-month mortality in naive HCC patients undergoing TACE. HCC patients with high FAIL-T scores may not benefit from TACE, and other treatment options, if available, should be considered.

摘要

背景

经动脉化疗栓塞术(TACE)治疗的不可切除肝细胞癌(HCC)患者群体多样,总生存期(OS)各不相同。尽管有多种预测OS的评分系统,但尚未解决的问题之一是识别可能无法从TACE中获益的患者。我们旨在开发并验证一种模型,用于识别首次TACE后生存期不足6个月的HCC患者。

方法

本研究纳入了2007年至2020年间接受TACE作为首次且唯一治疗的BCLC 0 - B期不可切除HCC患者。在首次TACE前,获取了人口统计学数据、实验室数据和肿瘤特征。符合条件的患者按2:1的比例随机分配到训练集和验证集。前者用于通过逐步多变量逻辑回归进行模型开发,后者用于验证模型。

结果

本研究共纳入317例患者(训练集210例,验证集107例)。两组的基线特征具有可比性。最终模型(FAIL - T)包括甲胎蛋白(AFP)、天门冬氨酸氨基转移酶(AST)、肿瘤大小、丙氨酸氨基转移酶(ALT)和肿瘤数量。FAIL - T模型在训练集和验证集中预测TACE后6个月死亡率的曲线下面积(AUROC)分别为0.855和0.806,而“6和12”评分在训练集和验证集中用于相同目的时的AUROC分别为0.751(<0.001)和0.729(=0.099)。

结论

最终模型有助于预测接受TACE的初治HCC患者的6个月死亡率。FAIL - T评分高的HCC患者可能无法从TACE中获益,如有其他可用的治疗选择,应予以考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706f/10185803/89e6bd4db9a0/fmed-10-1077842-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验