Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan.
J Phys Chem B. 2023 Jun 1;127(21):4775-4782. doi: 10.1021/acs.jpcb.3c01801. Epub 2023 May 18.
Chloride transport by microbial rhodopsins is actively being researched to understand how light energy is converted to drive ion pumping across cell membranes. Chloride pumps have been identified in archaea and eubacteria, and there are similarities and differences in the active site structures between these groups. Thus, it has not been clarified whether a common mechanism underlies the ion pump processes for all chloride-pumping rhodopsins. Here, we applied Raman optical activity (ROA) spectroscopy to two chloride pumps, rhodopsin-3 (NM-R3) and halorhodopsin from the cyanobacterium (MrHR). ROA is a vibrational spectroscopy that provides chiral sensitivity, and the sign of ROA signals can reveal twisting of cofactor molecules within proteins. Our ROA analysis revealed that the retinal Schiff base NH group orients toward the C helix and forms a direct hydrogen bond with a nearby chloride ion in NM-R3. In contrast, MrHR is suggested to contain two retinal conformations twisted in opposite directions; one conformation has a hydrogen bond with a chloride ion like NM-R3, while the other forms a hydrogen bond with a water molecule anchored by a G helix residue. These results suggest a general pump mechanism in which the chloride ion is "dragged" by the flipping Schiff base NH group upon photoisomerization.
微生物视紫红质的氯离子转运受到了广泛的研究,以了解光能如何转化为驱动跨细胞膜的离子泵。氯离子泵已在古菌和真细菌中被鉴定出来,这些群组的活性位点结构存在相似之处和不同之处。因此,尚未阐明所有氯离子泵视紫红质的离子泵过程是否具有共同的机制。在这里,我们应用拉曼光学活性(ROA)光谱学研究了两种氯离子泵,一种是来自蓝藻的视紫红质-3(NM-R3),另一种是卤化视紫红质(MrHR)。ROA 是一种提供手性敏感性的振动光谱学,ROA 信号的符号可以揭示蛋白质中辅因子分子的扭转。我们的 ROA 分析表明,NM-R3 中的视黄醛 Schiff 碱 NH 基团朝向 C 螺旋,并与附近的氯离子形成直接氢键。相比之下,MrHR 被认为包含两种扭转方向相反的视黄醛构象;一种构象与氯离子形成氢键,类似于 NM-R3,而另一种构象与由 G 螺旋残基锚定的水分子形成氢键。这些结果表明了一种普遍的泵机制,其中氯离子在光异构化时被翻转的 Schiff 碱 NH 基团“拖拽”。