Suppr超能文献

PPARγ 在臭氧暴露后小鼠血脂异常和肺功能改变中的作用。

Role of PPARγ in dyslipidemia and altered pulmonary functioning in mice following ozone exposure.

机构信息

Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, Connecticut 06269, USA.

Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA.

出版信息

Toxicol Sci. 2023 Jun 28;194(1):109-119. doi: 10.1093/toxsci/kfad048.

Abstract

Exposure to ozone causes decrements in pulmonary function, a response associated with alterations in lung lipids. Pulmonary lipid homeostasis is dependent on the activity of peroxisome proliferator activated receptor gamma (PPARγ), a nuclear receptor that regulates lipid uptake and catabolism by alveolar macrophages (AMs). Herein, we assessed the role of PPARγ in ozone-induced dyslipidemia and aberrant lung function in mice. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in a significant reduction in lung hysteresivity at 72 h post exposure; this correlated with increases in levels of total phospholipids, specifically cholesteryl esters, ceramides, phosphatidylcholines, phosphorylethanolamines, sphingomyelins, and di- and triacylglycerols in lung lining fluid. This was accompanied by a reduction in relative surfactant protein-B (SP-B) content, consistent with surfactant dysfunction. Administration of the PPARγ agonist, rosiglitazone (5 mg/kg/day, i.p.) reduced total lung lipids, increased relative amounts of SP-B, and normalized pulmonary function in ozone-exposed mice. This was associated with increases in lung macrophage expression of CD36, a scavenger receptor important in lipid uptake and a transcriptional target of PPARγ. These findings highlight the role of alveolar lipids as regulators of surfactant activity and pulmonary function following ozone exposure and suggest that targeting lipid uptake by lung macrophages may be an efficacious approach for treating altered respiratory mechanics.

摘要

臭氧暴露会导致肺功能下降,这是与肺脂质变化相关的反应。肺脂质稳态依赖于过氧化物酶体增殖物激活受体 γ(PPARγ)的活性,PPARγ 是一种核受体,可调节肺泡巨噬细胞(AMs)的脂质摄取和分解代谢。在此,我们评估了 PPARγ 在臭氧诱导的血脂异常和小鼠异常肺功能中的作用。将小鼠暴露于臭氧(0.8ppm,3 小时)会导致暴露后 72 小时肺滞后性显著降低;这与肺衬液中总磷脂水平的升高相关,特别是胆固醇酯、神经酰胺、磷脂酰胆碱、磷酸乙醇胺、鞘磷脂和二酰基和三酰基甘油。这伴随着相对表面活性剂蛋白-B(SP-B)含量的减少,与表面活性剂功能障碍一致。给予 PPARγ 激动剂罗格列酮(5mg/kg/天,腹腔注射)可减少总肺脂质,增加相对 SP-B 含量,并使臭氧暴露小鼠的肺功能正常化。这与肺巨噬细胞中 CD36 的表达增加有关,CD36 是一种在脂质摄取中起重要作用的清道夫受体,也是 PPARγ 的转录靶标。这些发现强调了肺泡脂质作为臭氧暴露后表面活性剂活性和肺功能调节剂的作用,并表明靶向肺巨噬细胞的脂质摄取可能是治疗呼吸力学改变的有效方法。

相似文献

1
Role of PPARγ in dyslipidemia and altered pulmonary functioning in mice following ozone exposure.
Toxicol Sci. 2023 Jun 28;194(1):109-119. doi: 10.1093/toxsci/kfad048.
2
CD44 Loss Disrupts Lung Lipid Surfactant Homeostasis and Exacerbates Oxidized Lipid-Induced Lung Inflammation.
Front Immunol. 2020 Jan 30;11:29. doi: 10.3389/fimmu.2020.00029. eCollection 2020.
3
PPAR-gamma pathways attenuate pulmonary granuloma formation in a carbon nanotube induced murine model of sarcoidosis.
Biochem Biophys Res Commun. 2018 Sep 5;503(2):684-690. doi: 10.1016/j.bbrc.2018.06.061. Epub 2018 Jun 15.
4
Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice.
Biochem Biophys Res Commun. 2011 Nov 18;415(2):288-93. doi: 10.1016/j.bbrc.2011.10.043. Epub 2011 Oct 18.
6
Targeted PPAR{gamma} deficiency in alveolar macrophages disrupts surfactant catabolism.
J Lipid Res. 2010 Jun;51(6):1325-31. doi: 10.1194/jlr.M001651. Epub 2010 Jan 11.
7
PPARgamma regulates the expression of cholesterol metabolism genes in alveolar macrophages.
Biochem Biophys Res Commun. 2010 Mar 19;393(4):682-7. doi: 10.1016/j.bbrc.2010.02.056. Epub 2010 Feb 17.
8
Peroxisome Proliferator-Activated Receptor γ Regulates Chronic Alcohol-Induced Alveolar Macrophage Dysfunction.
Am J Respir Cell Mol Biol. 2016 Jul;55(1):35-46. doi: 10.1165/rcmb.2015-0077OC.
10
Age-related increases in ozone-induced injury and altered pulmonary mechanics in mice with progressive lung inflammation.
Am J Physiol Lung Cell Mol Physiol. 2013 Oct 15;305(8):L555-68. doi: 10.1152/ajplung.00027.2013. Epub 2013 Aug 30.

本文引用的文献

1
Revisiting the role of pulmonary surfactant in chronic inflammatory lung diseases and environmental exposure.
Eur Respir Rev. 2021 Dec 15;30(162). doi: 10.1183/16000617.0077-2021. Print 2021 Dec 31.
2
Compositional, structural and functional properties of discrete coexisting complexes within bronchoalveolar pulmonary surfactant.
Biochim Biophys Acta Biomembr. 2022 Feb 1;1864(1):183808. doi: 10.1016/j.bbamem.2021.183808. Epub 2021 Oct 20.
3
Murine Cultured Alveolar Macrophages Provide a Novel Tool to Study Tissue-Resident Macrophage Behavior and Function.
Am J Respir Cell Mol Biol. 2022 Jan;66(1):64-75. doi: 10.1165/rcmb.2021-0190OC.
4
Systematic Review of Ozone Effects on Human Lung Function, 2013 Through 2020.
Chest. 2022 Jan;161(1):190-201. doi: 10.1016/j.chest.2021.07.2170. Epub 2021 Aug 10.
6
Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease.
Thorax. 2022 Jan;77(1):94-101. doi: 10.1136/thoraxjnl-2020-216296. Epub 2021 May 13.
9
Alveolar lipids in pulmonary disease. A review.
Lipids Health Dis. 2020 Jun 3;19(1):122. doi: 10.1186/s12944-020-01278-8.
10
Alveolar Dynamics and Beyond - The Importance of Surfactant Protein C and Cholesterol in Lung Homeostasis and Fibrosis.
Front Physiol. 2020 May 5;11:386. doi: 10.3389/fphys.2020.00386. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验