Am J Epidemiol. 2023 Oct 10;192(10):1659-1668. doi: 10.1093/aje/kwad119.
Prior applications of machine learning to population health have relied on conventional model assessment criteria, limiting the utility of models as decision support tools for public health practitioners. To facilitate practitioners' use of machine learning as a decision support tool for area-level intervention, we developed and applied 4 practice-based predictive model evaluation criteria (implementation capacity, preventive potential, health equity, and jurisdictional practicalities). We used a case study of overdose prevention in Rhode Island to illustrate how these criteria could inform public health practice and health equity promotion. We used Rhode Island overdose mortality records from January 2016-June 2020 (n = 1,408) and neighborhood-level US Census data. We employed 2 disparate machine learning models, Gaussian process and random forest, to illustrate the comparative utility of our criteria to guide interventions. Our models predicted 7.5%-36.4% of overdose deaths during the test period, illustrating the preventive potential of overdose interventions assuming 5%-20% statewide implementation capacities for neighborhood-level resource deployment. We describe the health equity implications of use of predictive modeling to guide interventions along the lines of urbanicity, racial/ethnic composition, and poverty. We then discuss considerations to complement predictive model evaluation criteria and inform the prevention and mitigation of spatially dynamic public health problems across the breadth of practice. This article is part of a Special Collection on Mental Health.
先前将机器学习应用于人群健康的研究主要依赖于传统的模型评估标准,这限制了模型作为公共卫生从业者决策支持工具的实用性。为了促进从业者将机器学习用作针对区域干预的决策支持工具,我们制定并应用了 4 种基于实践的预测模型评估标准(实施能力、预防潜力、健康公平和管辖范围的实际情况)。我们以罗德岛州的药物过量预防为例,说明了这些标准如何为公共卫生实践和促进健康公平提供信息。我们使用了罗德岛州 2016 年 1 月至 2020 年 6 月期间的药物过量死亡率记录(n=1408)和邻里层面的美国人口普查数据。我们采用了 2 种截然不同的机器学习模型,高斯过程和随机森林,来说明我们的标准如何比较有效地指导干预措施。我们的模型预测了测试期内 7.5%-36.4%的药物过量死亡人数,说明了假设在全州范围内对邻里资源部署的实施能力为 5%-20%的情况下,药物过量干预的预防潜力。我们描述了根据城市性、种族/族裔构成和贫困程度使用预测模型来指导干预的健康公平影响。然后,我们讨论了补充预测模型评估标准并为实践范围广泛的空间动态公共卫生问题的预防和缓解提供信息的注意事项。本文是关于心理健康的特刊的一部分。