Wu Jing, El-Hassar Lynda, Datta Dibyadeep, Thomas Merrilee, Zhang Yalan, Jenkins David P, DeLuca Nicholas J, Chatterjee Manavi, Gribkoff Valentin K, Arnsten Amy F T, Kaczmarek Leonard K
Yale University School of Medicine.
Res Sq. 2023 May 4:rs.3.rs-2870277. doi: 10.21203/rs.3.rs-2870277/v1.
The ability of monkeys and rats to carry out spatial working memory tasks has been shown to depend on the persistent firing of pyramidal cells in the prefrontal cortex (PFC), arising from recurrent excitatory connections on dendritic spines. These spines express hyperpolarization-activated cyclic nucleotide-gated (HCN) channels whose open state is increased by cAMP signaling, and which markedly alter PFC network connectivity and neuronal firing. In traditional neural circuits, activation of these non-selective cation channels leads to neuronal depolarization and increased firing rate. Paradoxically, cAMP activation of HCN channels in PFC pyramidal cells reduces working memory-related neuronal firing. This suggests that activation of HCN channels may hyperpolarize rather than depolarize these neurons. The current study tested the hypothesis that Na influx through HCN channels activates Slack Na-activated K (K) channels to hyperpolarize the membrane. We have found that HCN and Slack K channels coimmunoprecipitate in cortical extracts and that, by immunoelectron microscopy, they colocalize at postsynaptic spines of PFC pyramidal neurons. A specific blocker of HCN channels, ZD7288, reduces K current in pyramidal cells that express both HCN and Slack channels, but has no effect on K currents in an HEK cell line expressing Slack without HCN channels, indicating that blockade of HCN channels in neurons reduces K +current indirectly by lowering Na influx. Activation of HCN channels by cAMP in a cell line expressing a Ca reporter results in elevation of cytoplasmic Ca, but the effect of cAMP is reversed if the HCN channels are co-expressed with Slack channels. Finally, we used a novel pharmacological blocker of Slack channels to show that inhibition of Slack in rat PFC improves working memory performance, an effect previously demonstrated for blockers of HCN channels. Our results suggest that the regulation of working memory by HCN channels in PFC pyramidal neurons is mediated by an HCN-Slack channel complex that links activation HCN channels to suppression of neuronal excitability.
猴子和大鼠执行空间工作记忆任务的能力已被证明取决于前额叶皮层(PFC)中锥体神经元的持续放电,这种放电源于树突棘上的反复兴奋性连接。这些树突棘表达超极化激活的环核苷酸门控(HCN)通道,其开放状态通过cAMP信号传导增加,并且显著改变PFC网络连通性和神经元放电。在传统神经回路中,这些非选择性阳离子通道的激活导致神经元去极化和放电率增加。矛盾的是,PFC锥体神经元中HCN通道的cAMP激活会降低与工作记忆相关的神经元放电。这表明HCN通道的激活可能使这些神经元超极化而非去极化。当前研究测试了以下假设:通过HCN通道的Na+内流激活Slack钠激活钾(K+)通道使膜超极化。我们发现HCN和Slack K+通道在皮质提取物中共免疫沉淀,并且通过免疫电子显微镜观察,它们在PFC锥体神经元的突触后树突棘中共定位。HCN通道的特异性阻滞剂ZD7288可降低同时表达HCN和Slack通道的锥体神经元中的K+电流,但对在不表达HCN通道的情况下表达Slack的HEK细胞系中的K+电流没有影响,这表明在神经元中阻断HCN通道通过降低Na+内流间接降低K+电流。在表达钙报告基因的细胞系中,cAMP对HCN通道的激活导致细胞质钙升高,但如果HCN通道与Slack通道共表达,cAMP的作用则会逆转。最后,我们使用一种新型的Slack通道药理学阻滞剂表明,抑制大鼠PFC中的Slack可改善工作记忆表现,这一效应先前已在HCN通道阻滞剂中得到证实。我们的结果表明,PFC锥体神经元中HCN通道对工作记忆的调节是由一个HCN-Slack通道复合体介导的,该复合体将HCN通道的激活与神经元兴奋性的抑制联系起来。