Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, 06511, CT, USA; Department of Biostatistics, Yale School of Public Health, New Haven, 06511, CT, USA.
Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, 06511, CT, USA; Department of Biostatistics, Yale School of Public Health, New Haven, 06511, CT, USA.
Comput Methods Programs Biomed. 2023 Jul;237:107567. doi: 10.1016/j.cmpb.2023.107567. Epub 2023 Apr 29.
Marginal models with generalized estimating equations (GEE) are usually recommended for analyzing correlated ordinal outcomes which are commonly seen in a longitudinal study or clustered randomized trial (CRT). Within-cluster association is often of interest in longitudinal studies or CRTs, and can be estimated with paired estimating equations. However, the estimators for within-cluster association parameters and variances may be subject to finite-sample biases when the number of clusters is small. The objective of this article is to introduce a newly developed R package ORTH.Ord for analyzing correlated ordinal outcomes using GEE models with finite-sample bias corrections.
The R package ORTH.Ord implements a modified version of alternating logistic regressions with estimation based on orthogonalized residuals (ORTH), which use paired estimating equations to jointly estimate parameters in marginal mean and association models. The within-cluster association between ordinal responses is modeled by global pairwise odds ratios (POR). The R package also provides a finite-sample bias correction to POR parameter estimates based on matrix multiplicative adjusted orthogonalized residuals (MMORTH) for correcting estimating equations, and bias-corrected sandwich estimators with different options for covariance estimation.
A simulation study shows that MMORTH provides less biased global POR estimates and coverage of their 95% confidence intervals closer to the nominal level than uncorrected ORTH. An analysis of patient-reported outcomes from an orthognathic surgery clinical trial illustrates features of ORTH.Ord.
This article provides an overview of the ORTH method with bias-correction on both estimating equations and sandwich estimators for analyzing correlated ordinal data, describes the features of the ORTH.Ord R package, evaluates the performance of the package using a simulation study, and finally illustrates its application in an analysis of a clinical trial.
具有广义估计方程(GEE)的边缘模型通常推荐用于分析常见于纵向研究或聚类随机试验(CRT)中的相关有序结局。在纵向研究或 CRT 中,通常对簇内关联感兴趣,可以使用配对估计方程进行估计。然而,当簇数较小时,簇内关联参数和方差的估计器可能存在有限样本偏差。本文的目的是介绍一个新开发的 R 包 ORTH.Ord,用于使用具有有限样本偏差校正的 GEE 模型分析相关有序结局。
R 包 ORTH.Ord 实现了一种改良的交替逻辑回归,基于正交化残差(ORTH)进行估计,该方法使用配对估计方程共同估计边缘均值和关联模型中的参数。使用全局成对优势比(POR)对有序反应之间的簇内关联进行建模。R 包还提供了基于矩阵乘法校正正交化残差(MMORTH)的 POR 参数估计的有限样本偏差校正,以及具有不同协方差估计选项的偏差校正的夹心估计量。
一项模拟研究表明,MMORTH 提供了偏差更小的全局 POR 估计值,其 95%置信区间的覆盖率更接近名义水平,而 ORTH 则没有校正。一项来自正颌手术临床试验的患者报告结局分析说明了 ORTH.Ord 的特点。
本文概述了具有估计方程和夹心估计量偏差校正的 ORTH 方法,用于分析相关有序数据,描述了 ORTH.Ord R 包的特点,使用模拟研究评估了该包的性能,最后说明了其在临床试验分析中的应用。