Suppr超能文献

正交化残差的交替逻辑回归分析相关有序结局的 ORTH 包。

ORTH.Ord: An R package for analyzing correlated ordinal outcomes using alternating logistic regressions with orthogonalized residuals.

机构信息

Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, 06511, CT, USA; Department of Biostatistics, Yale School of Public Health, New Haven, 06511, CT, USA.

Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, 06511, CT, USA; Department of Biostatistics, Yale School of Public Health, New Haven, 06511, CT, USA.

出版信息

Comput Methods Programs Biomed. 2023 Jul;237:107567. doi: 10.1016/j.cmpb.2023.107567. Epub 2023 Apr 29.

Abstract

BACKGROUND AND OBJECTIVES

Marginal models with generalized estimating equations (GEE) are usually recommended for analyzing correlated ordinal outcomes which are commonly seen in a longitudinal study or clustered randomized trial (CRT). Within-cluster association is often of interest in longitudinal studies or CRTs, and can be estimated with paired estimating equations. However, the estimators for within-cluster association parameters and variances may be subject to finite-sample biases when the number of clusters is small. The objective of this article is to introduce a newly developed R package ORTH.Ord for analyzing correlated ordinal outcomes using GEE models with finite-sample bias corrections.

METHODS

The R package ORTH.Ord implements a modified version of alternating logistic regressions with estimation based on orthogonalized residuals (ORTH), which use paired estimating equations to jointly estimate parameters in marginal mean and association models. The within-cluster association between ordinal responses is modeled by global pairwise odds ratios (POR). The R package also provides a finite-sample bias correction to POR parameter estimates based on matrix multiplicative adjusted orthogonalized residuals (MMORTH) for correcting estimating equations, and bias-corrected sandwich estimators with different options for covariance estimation.

RESULTS

A simulation study shows that MMORTH provides less biased global POR estimates and coverage of their 95% confidence intervals closer to the nominal level than uncorrected ORTH. An analysis of patient-reported outcomes from an orthognathic surgery clinical trial illustrates features of ORTH.Ord.

CONCLUSIONS

This article provides an overview of the ORTH method with bias-correction on both estimating equations and sandwich estimators for analyzing correlated ordinal data, describes the features of the ORTH.Ord R package, evaluates the performance of the package using a simulation study, and finally illustrates its application in an analysis of a clinical trial.

摘要

背景与目的

具有广义估计方程(GEE)的边缘模型通常推荐用于分析常见于纵向研究或聚类随机试验(CRT)中的相关有序结局。在纵向研究或 CRT 中,通常对簇内关联感兴趣,可以使用配对估计方程进行估计。然而,当簇数较小时,簇内关联参数和方差的估计器可能存在有限样本偏差。本文的目的是介绍一个新开发的 R 包 ORTH.Ord,用于使用具有有限样本偏差校正的 GEE 模型分析相关有序结局。

方法

R 包 ORTH.Ord 实现了一种改良的交替逻辑回归,基于正交化残差(ORTH)进行估计,该方法使用配对估计方程共同估计边缘均值和关联模型中的参数。使用全局成对优势比(POR)对有序反应之间的簇内关联进行建模。R 包还提供了基于矩阵乘法校正正交化残差(MMORTH)的 POR 参数估计的有限样本偏差校正,以及具有不同协方差估计选项的偏差校正的夹心估计量。

结果

一项模拟研究表明,MMORTH 提供了偏差更小的全局 POR 估计值,其 95%置信区间的覆盖率更接近名义水平,而 ORTH 则没有校正。一项来自正颌手术临床试验的患者报告结局分析说明了 ORTH.Ord 的特点。

结论

本文概述了具有估计方程和夹心估计量偏差校正的 ORTH 方法,用于分析相关有序数据,描述了 ORTH.Ord R 包的特点,使用模拟研究评估了该包的性能,最后说明了其在临床试验分析中的应用。

相似文献

1
ORTH.Ord: An R package for analyzing correlated ordinal outcomes using alternating logistic regressions with orthogonalized residuals.
Comput Methods Programs Biomed. 2023 Jul;237:107567. doi: 10.1016/j.cmpb.2023.107567. Epub 2023 Apr 29.
2
GEEMAEE: A SAS macro for the analysis of correlated outcomes based on GEE and finite-sample adjustments with application to cluster randomized trials.
Comput Methods Programs Biomed. 2023 Mar;230:107362. doi: 10.1016/j.cmpb.2023.107362. Epub 2023 Jan 20.
3
Regression analysis of correlated ordinal data using orthogonalized residuals.
Biometrics. 2014 Dec;70(4):902-9. doi: 10.1111/biom.12210. Epub 2014 Aug 18.
4
Alternating logistic regressions with improved finite sample properties.
Biometrics. 2017 Jun;73(2):696-705. doi: 10.1111/biom.12614. Epub 2016 Oct 24.
5
ORTH: R and SAS software for regression models of correlated binary data based on orthogonalized residuals and alternating logistic regressions.
Comput Methods Programs Biomed. 2014 Feb;113(2):557-68. doi: 10.1016/j.cmpb.2013.09.017. Epub 2013 Oct 31.
7
Finite-sample adjustments in variance estimators for clustered competing risks regression.
Stat Med. 2022 Jun 30;41(14):2645-2664. doi: 10.1002/sim.9375. Epub 2022 Mar 14.
8
Improving sandwich variance estimation for marginal Cox analysis of cluster randomized trials.
Biom J. 2023 Mar;65(3):e2200113. doi: 10.1002/bimj.202200113. Epub 2022 Dec 25.
9
GEECORR: A SAS macro for regression models of correlated binary responses and within-cluster correlation using generalized estimating equations.
Comput Methods Programs Biomed. 2021 Sep;208:106276. doi: 10.1016/j.cmpb.2021.106276. Epub 2021 Jul 14.
10
Covariance estimators for generalized estimating equations (GEE) in longitudinal analysis with small samples.
Stat Med. 2016 May 10;35(10):1706-21. doi: 10.1002/sim.6817. Epub 2015 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验