Department of Mathematics and Statistics, Mississippi State University, Starkville, Mississippi, USA.
Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA.
Stat Med. 2022 Jun 30;41(14):2645-2664. doi: 10.1002/sim.9375. Epub 2022 Mar 14.
The marginal Fine-Gray proportional subdistribution hazards model is a popular approach to directly study the association between covariates and the cumulative incidence function with clustered competing risks data, which often arise in multicenter randomized trials or multilevel observational studies. To account for the within-cluster correlations between failure times, the uncertainty of the regression parameters estimators is quantified by the robust sandwich variance estimator, which may have unsatisfactory performance with a limited number of clusters. To overcome this limitation, we propose four bias-corrected variance estimators to reduce the negative bias of the usual sandwich variance estimator, extending the bias-correction techniques from generalized estimating equations with noncensored exponential family outcomes to clustered competing risks outcomes. We further compare their finite-sample operating characteristics through simulations and two real data examples. In particular, we found the Mancl and DeRouen (MD) type sandwich variance estimator generally has the smallest bias. Furthermore, with a small number of clusters, the Wald -confidence interval with the MD sandwich variance estimator carries close to nominal coverage for the cluster-level effect parameter. The -confidence intervals based on the sandwich variance estimator with any one of the three types of multiplicative bias correction or the -confidence interval with the Morel, Bokossa and Neerchal (MBN) type sandwich variance estimator have close to nominal coverage for the individual-level effect parameter. Finally, we develop a user-friendly R package crrcbcv implementing the proposed sandwich variance estimators to assist practical applications.
边缘 Fine-Gray 比例亚分布风险模型是一种流行的方法,用于直接研究协变量与聚类竞争风险数据累积发生率函数之间的关联,这种数据通常出现在多中心随机试验或多层次观察性研究中。为了考虑失效时间之间的聚类相关性,通过稳健的 sandwich 方差估计器来量化回归参数估计量的不确定性,而当聚类数量有限时,该估计器的性能可能不尽如人意。为了克服这一限制,我们提出了四种偏置校正的方差估计器,以减少常用 sandwich 方差估计器的负偏差,将从无删失指数族结果的广义估计方程扩展到聚类竞争风险结果的偏置校正技术。我们通过模拟和两个真实数据示例进一步比较了它们的有限样本运行特性。特别是,我们发现 Mancl 和 DeRouen (MD) 型 sandwich 方差估计器通常具有最小的偏差。此外,在聚类数量较少的情况下,基于 MD sandwich 方差估计器的 Wald 置信区间对于聚类水平效应参数具有接近名义的覆盖度。基于任何一种乘法偏置校正的 sandwich 方差估计器的 -置信区间或基于 Morel、Bokossa 和 Neerchal (MBN) 型 sandwich 方差估计器的 -置信区间对于个体水平效应参数具有接近名义的覆盖度。最后,我们开发了一个用户友好的 R 包 crrcbcv,实现了所提出的 sandwich 方差估计器,以协助实际应用。