School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
Nat Commun. 2022 Apr 6;13(1):1861. doi: 10.1038/s41467-022-29360-y.
The mammalian epigenome contains thousands of heterochromatin nanodomains (HNDs) marked by di- and trimethylation of histone H3 at lysine 9 (H3K9me2/3), which have a typical size of 3-10 nucleosomes. However, what governs HND location and extension is only partly understood. Here, we address this issue by introducing the chromatin hierarchical lattice framework (ChromHL) that predicts chromatin state patterns with single-nucleotide resolution. ChromHL is applied to analyse four HND types in mouse embryonic stem cells that are defined by histone methylases SUV39H1/2 or GLP, transcription factor ADNP or chromatin remodeller ATRX. We find that HND patterns can be computed from PAX3/9, ADNP and LINE1 sequence motifs as nucleation sites and boundaries that are determined by DNA sequence (e.g. CTCF binding sites), cooperative interactions between nucleosomes as well as nucleosome-HP1 interactions. Thus, ChromHL rationalizes how patterns of H3K9me2/3 are established and changed via the activity of protein factors in processes like cell differentiation.
哺乳动物表观基因组包含数千个异染色质纳米区(HNDs),其特征是组蛋白 H3 赖氨酸 9 上的二甲基化和三甲基化(H3K9me2/3),其典型大小为 3-10 个核小体。然而,HND 位置和延伸的控制机制尚不完全清楚。在这里,我们通过引入染色质层次格子框架(ChromHL)来解决这个问题,该框架可以以单核苷酸分辨率预测染色质状态模式。ChromHL 用于分析在小鼠胚胎干细胞中定义的四种 HND 类型,这些类型由组蛋白甲基转移酶 SUV39H1/2 或 GLP、转录因子 ADNP 或染色质重塑酶 ATRX 定义。我们发现,HND 模式可以从 PAX3/9、ADNP 和 LINE1 序列基序作为成核位点和边界来计算,这些成核位点和边界由 DNA 序列(例如 CTCF 结合位点)、核小体之间的协同相互作用以及核小体-HP1 相互作用决定。因此,ChromHL 解释了 H3K9me2/3 模式如何通过细胞分化等过程中蛋白质因子的活性来建立和改变。