Institute of Computational Engineering, Department of Engineering, University of Luxembourg, 6, avenue de la Fonte, Esch-sur-Alzette, L-4364, Luxembourg; Arts et Metiers Institute of Technology, IBHGC, 151 bd de l'hopital, Paris, 75013, France; Arts et Metiers Institute of Technology, Univ. of Bordeaux, CNRS, Bordeaux INP, INRAE, I2M Bordeaux, Avenue d'Aquitaine, Pessac, 33607, France.
Institute of Computational Engineering, Department of Engineering, University of Luxembourg, 6, avenue de la Fonte, Esch-sur-Alzette, L-4364, Luxembourg.
J Mech Behav Biomed Mater. 2023 Jul;143:105902. doi: 10.1016/j.jmbbm.2023.105902. Epub 2023 May 11.
Soft biological tissues demonstrate strong time-dependent and strain-rate mechanical behavior, arising from their intrinsic visco-elasticity and fluid-solid interactions. The time-dependent mechanical properties of soft tissues influence their physiological functions and are related to several pathological processes. Poro-elastic modeling represents a promising approach because it allows the integration of multiscale/multiphysics data to probe biologically relevant phenomena at a smaller scale and embeds the relevant mechanisms at the larger scale. The implementation of multiphase flow poro-elastic models however is a complex undertaking, requiring extensive knowledge. The open-source software FEniCSx Project provides a novel tool for the automated solution of partial differential equations by the finite element method. This paper aims to provide the required tools to model the mixed formulation of poro-elasticity, from the theory to the implementation, within FEniCSx. Several benchmark cases are studied. A column under confined compression conditions is compared to the Terzaghi analytical solution, using the L2-norm. An implementation of poro-hyper-elasticity is proposed. A bi-compartment column is compared to previously published results (Cast3m implementation). For all cases, accurate results are obtained in terms of a normalized Root Mean Square Error (RMSE). Furthermore, the FEniCSx computation is found three times faster than the legacy FEniCS one. The benefits of parallel computation are also highlighted.
软生物组织表现出强烈的时变和应变速率力学行为,这源于其固有粘弹性和流固相互作用。软组织的时变力学性能影响其生理功能,并与几种病理过程有关。多孔弹性建模代表了一种很有前途的方法,因为它允许整合多尺度/多物理数据,以在较小的尺度上探测与生物学相关的现象,并在较大的尺度上嵌入相关的机制。然而,多相流多孔弹性模型的实现是一项复杂的任务,需要广泛的知识。开源软件 FEniCSx 项目提供了一种通过有限元方法自动求解偏微分方程的新工具。本文旨在提供在 FEniCSx 中从理论到实现多孔弹性混合格式建模所需的工具。研究了几个基准案例。使用 L2 范数,将受压条件下的柱与 Terzaghi 解析解进行比较。提出了多孔超弹性的实现。将双室柱与先前发表的结果(Cast3m 实现)进行比较。对于所有情况,均以归一化均方根误差(RMSE)的形式获得了准确的结果。此外,FEniCSx 的计算速度比传统的 FEniCS 快三倍。还强调了并行计算的好处。