用于研究机械负荷对人体皮肤微循环影响的分层孔隙力学方法。
Hierarchical Poromechanical Approach to Investigate the Impact of Mechanical Loading on Human Skin Micro-Circulation.
作者信息
Lavigne Thomas, Urcun Stéphane, Fromy Bérengère, Josset-Lamaugarny Audrey, Lagache Alexandre, Suarez-Afanador Camilo A, Bordas Stéphane P A, Rohan Pierre-Yves, Sciumè Giuseppe
机构信息
Institute of Computational Engineering, Department of Engineering, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Institute of Technology, Paris, France.
出版信息
Int J Numer Method Biomed Eng. 2025 Jul;41(7):e70066. doi: 10.1002/cnm.70066.
Extensive research on human skin anatomy has revealed that the skin functions as a complex multi-scale and multi-phase system, containing up to 70% of bounded and free circulating water. The presence of moving fluids significantly influences the mechanical and biological responses of the skin, affecting its time-dependent behavior and the transport of essential nutrients and oxygen to cells. Poroelastic modeling emerges as a promising approach to investigate biologically relevant phenomena at finer scales while embedding crucial mechanisms at larger scales as it facilitates the integration of multi-scale and multi-physics processes. Despite extensive use of poromechanics in other tissues, no hierarchical multi-compartment porous model that incorporates blood supply has yet been experimentally evaluated to simulate the in vivo mechanical and micro-circulatory response of human skin. This paper introduces a hierarchical two-compartment model that accounts for fluid distribution within the interstitium and the micro-circulation of blood. A general theoretical framework, which includes a biphasic interstitium (comprising interstitial fluid and non-structural cells), is formulated and studied through a one-dimensional consolidation test of a 100 μm column. The inclusion of a biphasic interstitium allows the model to account separately for the motion of cells and interstitial fluid, recognising their differing characteristic times. An extension of the model to include biological exchanges such as oxygen transport is discussed in the appendix. The preliminary evaluation demonstrated that cell viscosity introduces a second characteristic time beyond that of interstitial fluid movement. However, at high cell viscosity values and short time scales, cells exhibit behavior akin to that of solid materials. Based on these observations, a simplified version of the model was used to replicate an experimental campaign carried out on short time scales. Local pressure (up to 31 kPa) was applied to the skin of the dorsal face of the middle finger through a laser Doppler probe PF801 (Perimed Sweden) attached to an apparatus as previously described (Fromy Brain Res 1998). The model demonstrated its qualitative ability to represent both ischaemia and post-occlusive reactive hyperaemia, aligning with experimental observations. All numerical simulations were performed using the open source software FEniCSx v0.9.0. To promote transparency and reproducibility, the anonymized experimental data and the corresponding finite element codes are publicly available on GitHub.
对人体皮肤解剖结构的广泛研究表明,皮肤作为一个复杂的多尺度、多相系统发挥作用,含有高达70%的结合水和自由循环水。流动液体的存在显著影响皮肤的力学和生物学反应,影响其随时间变化的行为以及必需营养物质和氧气向细胞的运输。多孔弹性建模成为一种很有前景的方法,可在更精细的尺度上研究生物学相关现象,同时将关键机制嵌入更大尺度,因为它有助于整合多尺度和多物理过程。尽管多孔力学在其他组织中得到广泛应用,但尚未对包含血液供应的分层多隔室多孔模型进行实验评估,以模拟人体皮肤的体内力学和微循环反应。本文介绍了一个分层双隔室模型,该模型考虑了间质内的流体分布和血液的微循环。通过对一个100μm柱体进行一维固结试验,建立并研究了一个通用理论框架,该框架包括一个双相间质(由间质液和非结构细胞组成)。包含双相间质使模型能够分别考虑细胞和间质液的运动,认识到它们不同的特征时间。附录中讨论了该模型的扩展,以包括生物交换,如氧气运输。初步评估表明,细胞粘度引入了一个超出间质液运动的第二个特征时间。然而,在高细胞粘度值和短时间尺度下,细胞表现出类似于固体材料的行为。基于这些观察结果,使用该模型的简化版本来复制在短时间尺度上进行的一项实验活动。通过连接到如前所述装置的激光多普勒探头PF801(瑞典Perimed公司),对中指背面皮肤施加局部压力(高达31kPa)。该模型展示了其定性表示缺血和闭塞后反应性充血的能力,与实验观察结果一致。所有数值模拟均使用开源软件FEniCSx v0.9.0进行。为了提高透明度和可重复性,匿名化的实验数据和相应的有限元代码在GitHub上公开提供。
相似文献
Int J Numer Method Biomed Eng. 2025-7
Arch Ital Urol Androl. 2025-6-30
2025-1
Psychopharmacol Bull. 2024-7-8
Health Technol Assess. 2001
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2022-5-20
本文引用的文献
PNAS Nexus. 2023-8-22
Biology (Basel). 2023-6-30
J Mech Behav Biomed Mater. 2023-7