文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于系统生物学的药物重定位方法预测透明细胞肾细胞癌的候选药物。

Prediction of drug candidates for clear cell renal cell carcinoma using a systems biology-based drug repositioning approach.

机构信息

Bash Biotech Inc, 600 est Broadway, Suite 700, San Diego, CA 92101, USA; Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden.

Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden.

出版信息

EBioMedicine. 2022 Apr;78:103963. doi: 10.1016/j.ebiom.2022.103963. Epub 2022 Mar 25.


DOI:10.1016/j.ebiom.2022.103963
PMID:35339898
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8960981/
Abstract

BACKGROUND: The response rates of the clinical chemotherapies are still low in clear cell renal cell carcinoma (ccRCC). Computational drug repositioning is a promising strategy to discover new uses for existing drugs to treat patients who cannot get benefits from clinical drugs. METHODS: We proposed a systematic approach which included the target prediction based on the co-expression network analysis of transcriptomics profiles of ccRCC patients and drug repositioning for cancer treatment based on the analysis of shRNA- and drug-perturbed signature profiles of human kidney cell line. FINDINGS: First, based on the gene co-expression network analysis, we identified two types of gene modules in ccRCC, which significantly enriched with unfavorable and favorable signatures indicating poor and good survival outcomes of patients, respectively. Then, we selected four genes, BUB1B, RRM2, ASF1B and CCNB2, as the potential drug targets based on the topology analysis of modules. Further, we repurposed three most effective drugs for each target by applying the proposed drug repositioning approach. Finally, we evaluated the effects of repurposed drugs using an in vitro model and observed that these drugs inhibited the protein levels of their corresponding target genes and cell viability. INTERPRETATION: These findings proved the usefulness and efficiency of our approach to improve the drug repositioning researches for cancer treatment and precision medicine. FUNDING: This study was funded by Knut and Alice Wallenberg Foundation and Bash Biotech Inc., San Diego, CA, USA.

摘要

背景:透明细胞肾细胞癌 (ccRCC) 的临床化疗反应率仍然较低。计算药物再定位是一种很有前途的策略,可以发现现有药物的新用途,以治疗无法从临床药物中获益的患者。

方法:我们提出了一种系统的方法,包括基于 ccRCC 患者转录组谱的共表达网络分析的靶标预测,以及基于人肾细胞系 shRNA 和药物扰动特征谱的癌症治疗药物再定位。

发现:首先,基于基因共表达网络分析,我们在 ccRCC 中鉴定出两种类型的基因模块,它们显著富集了不良和有利的特征,分别表明患者的生存结果较差和较好。然后,我们基于模块的拓扑分析,选择了 BUB1B、RRM2、ASF1B 和 CCNB2 这四个基因作为潜在的药物靶点。进一步,我们通过应用我们提出的药物重定位方法,为每个靶点重新定位了三种最有效的药物。最后,我们通过体外模型评估了这些重新定位药物的效果,观察到这些药物抑制了相应靶基因的蛋白水平和细胞活力。

解释:这些发现证明了我们的方法在提高癌症治疗和精准医学药物再定位研究方面的有效性和效率。

资助:本研究由 Knut 和 Alice Wallenberg 基金会和 Bash Biotech Inc. 资助,后者位于美国加利福尼亚州圣地亚哥。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e8/8960981/f03af053c56a/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e8/8960981/ba1fd8668238/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e8/8960981/383820bd4813/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e8/8960981/686d9bfb758f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e8/8960981/9ebc418c247e/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e8/8960981/fa39d6040bd7/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e8/8960981/f03af053c56a/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e8/8960981/ba1fd8668238/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e8/8960981/383820bd4813/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e8/8960981/686d9bfb758f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e8/8960981/9ebc418c247e/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e8/8960981/fa39d6040bd7/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24e8/8960981/f03af053c56a/gr6.jpg

相似文献

[1]
Prediction of drug candidates for clear cell renal cell carcinoma using a systems biology-based drug repositioning approach.

EBioMedicine. 2022-4

[2]
The impact of estimated tumour purity on gene expression-based drug repositioning of Clear Cell Renal Cell Carcinoma samples.

Sci Rep. 2019-2-21

[3]
Identification of 9 key genes and small molecule drugs in clear cell renal cell carcinoma.

Aging (Albany NY). 2019-8-18

[4]
A Gene Co-Expression Network-Based Drug Repositioning Approach Identifies Candidates for Treatment of Hepatocellular Carcinoma.

Cancers (Basel). 2022-3-19

[5]
Personalised drug repositioning for Clear Cell Renal Cell Carcinoma using gene expression.

Sci Rep. 2018-3-27

[6]
Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.

BJU Int. 2011-3-16

[7]
Identification of Four Pathological Stage-Relevant Genes in Association with Progression and Prognosis in Clear Cell Renal Cell Carcinoma by Integrated Bioinformatics Analysis.

Biomed Res Int. 2020

[8]
Identification of Prognostic Related Hub Genes in Clear-Cell Renal Cell Carcinoma Bioinformatical Analysis.

Chin Med Sci J. 2021-6-30

[9]
Identification of CXCL13 as a potential biomarker in clear cell renal cell carcinoma via comprehensive bioinformatics analysis.

Biomed Pharmacother. 2019-8-4

[10]
Discovery of drug targets and therapeutic agents based on drug repositioning to treat lung adenocarcinoma.

Biomed Pharmacother. 2023-5

引用本文的文献

[1]
Integration of scRNA-seq and ST-seq identifies hyperproliferative RRM2+ cells features and therapeutic targets in gastric cancer.

J Transl Med. 2025-7-15

[2]
Circulating bile acid profiles characteristics and the potential predictive role in clear cell renal cell carcinoma progression.

BMC Nephrol. 2025-4-23

[3]
Osalmid sensitizes clear cell renal cell carcinoma to navitoclax through a STAT3/BCL-XL pathway.

Cancer Lett. 2025-3-31

[4]
The Human Pathology Atlas for deciphering the prognostic features of human cancers.

EBioMedicine. 2025-1

[5]
Drug Repurposing for COVID-19 by Constructing a Comorbidity Network with Central Nervous System Disorders.

Int J Mol Sci. 2024-8-16

[6]
Discovery of a Therapeutic Agent for Glioblastoma Using a Systems Biology-Based Drug Repositioning Approach.

Int J Mol Sci. 2024-7-18

[7]
Single-cell transcriptomic analysis in clear cell renal cell carcinoma: Deciphering the role of APP within the tumour microenvironment.

J Cell Mol Med. 2024-3

[8]
Comprehensive analysis of a tryptophan metabolism-related model in the prognostic prediction and immune status for clear cell renal carcinoma.

Eur J Med Res. 2024-1-5

[9]
Open MoA: revealing the mechanism of action (MoA) based on network topology and hierarchy.

Bioinformatics. 2023-11-1

[10]
Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation.

Nat Commun. 2023-9-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索