Kol Barak
91904 Jerusalem, Israel Racah Institute of Physics, Hebrew University.
Celest Mech Dyn Astron. 2023;135(3):29. doi: 10.1007/s10569-023-10144-5. Epub 2023 May 15.
The three-body problem is a fundamental long-standing open problem, with applications in all branches of physics, including astrophysics, nuclear physics and particle physics. In general, conserved quantities allow to reduce the formulation of a mechanical problem to fewer degrees of freedom, a process known as dynamical reduction. However, extant reductions are either non-general, or hide the problem's symmetry or include unexplained definitions. This paper presents a general and natural dynamical reduction, which avoids these issues. Any three-body configuration defines a triangle, and its orientation in space. Accordingly, we decompose the dynamical variables into the geometry (shape + size) and orientation of the triangle. The geometry variables are shown to describe the motion of an abstract point in a curved 3d space, subject to a potential-derived force and a magnetic-like force with a monopole charge. The orientation variables are shown to obey a dynamics analogous to the Euler equations for a rotating rigid body; only here the moments of inertia depend on the geometry variables, rather than being constant. The reduction rests on a novel symmetric solution to the center of mass constraint inspired by Lagrange's solution to the cubic. The formulation of the orientation variables is novel and rests on a partially known generalization of the Euler-Lagrange equations to non-coordinate velocities. Applications to global features, to the statistical solution, to special exact solutions and to economized simulations are presented. A generalization to the four-body problem is presented.
三体问题是一个长期存在的基本开放性问题,在包括天体物理学、核物理学和粒子物理学在内的所有物理学分支中都有应用。一般来说,守恒量可以将力学问题的表述简化为更少的自由度,这一过程称为动力学约化。然而,现有的约化方法要么不具有一般性,要么隐藏了问题的对称性,要么包含无法解释的定义。本文提出了一种通用且自然的动力学约化方法,避免了这些问题。任何三体构型都定义了一个三角形及其在空间中的取向。因此,我们将动力学变量分解为三角形的几何形状(形状+大小)和取向。几何变量被证明描述了一个抽象点在弯曲三维空间中的运动,该点受到一个由势导出的力和一个具有单极电荷的类磁力作用。取向变量被证明服从一种类似于旋转刚体欧拉方程的动力学;只是这里的转动惯量取决于几何变量,而不是恒定不变。这种约化基于一种受拉格朗日三次方程解启发的质心约束的新颖对称解。取向变量的表述是新颖的,它基于对欧拉 - 拉格朗日方程到非坐标速度的部分已知推广。文中给出了其在全局特征、统计解、特殊精确解和简化模拟方面的应用。还给出了对四体问题的推广。