González Diaz Diego, Davis Sergio, Curilef Sergio
Departamento de Física, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile.
Banco Itaú-Corpbanca, Casilla 80-D, Santiago, Chile.
Entropy (Basel). 2020 Aug 21;22(9):916. doi: 10.3390/e22090916.
A permanent challenge in physics and other disciplines is to solve Euler-Lagrange equations. Thereby, a beneficial investigation is to continue searching for new procedures to perform this task. A novel Monte Carlo Metropolis framework is presented for solving the equations of motion in Lagrangian systems. The implementation lies in sampling the path space with a probability functional obtained by using the maximum caliber principle. Free particle and harmonic oscillator problems are numerically implemented by sampling the path space for a given action by using Monte Carlo simulations. The average path converges to the solution of the equation of motion from classical mechanics, analogously as a canonical system is sampled for a given energy by computing the average state, finding the least energy state. Thus, this procedure can be general enough to solve other differential equations in physics and a useful tool to calculate the time-dependent properties of dynamical systems in order to understand the non-equilibrium behavior of statistical mechanical systems.
在物理学和其他学科中,一个长期存在的挑战是求解欧拉-拉格朗日方程。因此,一项有益的研究是继续寻找执行此任务的新方法。本文提出了一种新颖的蒙特卡罗-梅特罗波利斯框架,用于求解拉格朗日系统中的运动方程。其实现方式是通过使用最大口径原理获得的概率泛函对路径空间进行采样。通过蒙特卡罗模拟对给定作用量的路径空间进行采样,对自由粒子和谐振子问题进行了数值实现。平均路径收敛到经典力学中运动方程的解,类似于通过计算平均状态找到能量最低状态,对给定能量对正则系统进行采样。因此,该方法可能具有足够的通用性来求解物理学中的其他微分方程,并且是计算动态系统随时间变化特性的有用工具,以便理解统计力学系统的非平衡行为。