Suppr超能文献

迈向手性声表面等离子体学。

Towards chiral acoustoplasmonics.

作者信息

Castillo López de Larrinzar Beatriz, Xiang Chushuang, Cardozo de Oliveira Edson Rafael, Lanzillotti-Kimura Norberto Daniel, García-Martín Antonio

机构信息

Instituto de Micro y Nanotecnología IMN-CNM, CSIC, CEI UAM + CSIC, Isaac Newton 8, Tres Cantos, Madrid 28760, Spain.

CNRS, Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, 10 Boulevard Thomas Gobert, Palaiseau 91120, France.

出版信息

Nanophotonics. 2023 Apr 28;12(11):1957-1964. doi: 10.1515/nanoph-2022-0780. eCollection 2023 May.

Abstract

The possibility of creating and manipulating nanostructured materials encouraged the exploration of new strategies to control electromagnetic properties. Among the most intriguing nanostructures are those that respond differently to helical polarization, i.e., exhibit chirality. Here, we present a simple structure based on crossed elongated bars where light-handedness defines the dominating cross-section absorption or scattering, with a 200 % difference from its counterpart (scattering or absorption). The proposed chiral system opens the way to enhanced coherent phonon excitation and detection. We theoretically propose a simple coherent phonon generation (time-resolved Brillouin scattering) experiment using circularly polarized light. In the reported structures, the generation of acoustic phonons is optimized by maximizing the absorption, while the detection is enhanced at the same wavelength and different helicity by engineering the scattering properties. The presented results constitute one of the first steps towards harvesting chirality effects in the design and optimization of efficient and versatile acoustoplasmonic transducers.

摘要

创建和操控纳米结构材料的可能性促使人们探索控制电磁特性的新策略。最引人入胜的纳米结构之一是那些对螺旋极化有不同响应的结构,即表现出手性。在此,我们展示了一种基于交叉细长条的简单结构,其中左旋或右旋定义了主导的横截面吸收或散射,与其对应物(散射或吸收)相差200%。所提出的手性系统为增强相干声子激发和检测开辟了道路。我们从理论上提出了一个使用圆偏振光的简单相干声子产生(时间分辨布里渊散射)实验。在所报道的结构中,通过最大化吸收来优化声子的产生,同时通过设计散射特性在相同波长和不同螺旋度下增强检测。所呈现的结果是在高效通用的声子等离子体换能器的设计和优化中利用手性效应的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bed0/11502098/61b28593c7b1/j_nanoph-2022-0780_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验