Polyansky Anton A, Efremov Roman G
Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna BioCenter 5, A-1030 Vienna, Austria.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia.
Comput Struct Biotechnol J. 2023 Apr 23;21:2837-2844. doi: 10.1016/j.csbj.2023.04.021. eCollection 2023.
Constitutive activation of receptor tyrosine kinases (RTKs) via different mutations has a strong impact on the development of severe human disorders, including cancer. Here we propose a putative activation scenario of RTKs, whereby transmembrane (TM) mutations can also promote higher-order oligomerization of the receptors that leads to the subsequent ligand-free activation. We illustrate this scenario using a computational modelling framework comprising sequence-based structure prediction and all-atom 1 µs molecular dynamics (MD) simulations in a lipid membrane for a previously characterised oncogenic TM mutation V536E in platelet-derived growth factor receptor alpha (PDGFRA). We show that in the course of MD simulations the mutant TM tetramer retains stable and compact configuration strengthened by tight protein-protein interactions, while the wild type TM tetramer demonstrates looser packing and a tendency to dissociate. Moreover, the mutation affects the characteristic motions of mutated TM helical segments by introducing additional non-covalent crosslinks in the middle of the TM tetramer, which operate as mechanical hinges. This leads to dynamic decoupling of the C-termini from the rigidified N-terminal parts and facilitates more pronounced possible displacement between the C-termini of the mutant TM helical regions that can provide more freedom for mutual rearrangement of the kinase domains located downstream. Our results for the V536E mutation in the context of PDGFRA TM tetramer allow for the possibility that the effect of oncogenic TM mutations can go beyond alternating the structure and dynamics of TM dimeric states and might also promote the formation of higher-order oligomers directly contributing to ligand-independent signalling effectuated by PDGFRA and other RTKs.
受体酪氨酸激酶(RTK)通过不同突变的组成性激活对包括癌症在内的严重人类疾病的发展有强烈影响。在此,我们提出了一种RTK的假定激活情景,即跨膜(TM)突变也可促进受体的高阶寡聚化,进而导致随后的无配体激活。我们使用一个计算建模框架来说明这种情景,该框架包括基于序列的结构预测和在脂质膜中对血小板衍生生长因子受体α(PDGFRA)中一个先前已表征的致癌TM突变V536E进行的全原子1微秒分子动力学(MD)模拟。我们表明,在MD模拟过程中,突变型TM四聚体通过紧密的蛋白质-蛋白质相互作用保持稳定且紧凑的构型,而野生型TM四聚体则表现出更松散的堆积和解离倾向。此外,该突变通过在TM四聚体中间引入额外的非共价交联来影响突变TM螺旋段的特征运动,这些交联起到机械铰链的作用。这导致C末端与刚性化的N末端部分动态解耦,并促进突变TM螺旋区域的C末端之间更明显的可能位移,从而为下游激酶结构域的相互重排提供更多自由。我们在PDGFRA TM四聚体背景下对V536E突变的研究结果表明,致癌TM突变的影响可能不仅限于改变TM二聚体状态的结构和动力学,还可能直接促进高阶寡聚体的形成,从而导致由PDGFRA和其他RTK介导的不依赖配体的信号传导。