Suppr超能文献

大气中区域氮循环建模:现状及其对未来排放控制策略的响应。

Modeling regional nitrogen cycle in the atmosphere: Present situation and its response to the future emissions control strategy.

机构信息

School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 510982, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou 510275, China; Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University, Zhuhai 510982, China.

School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 510982, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou 510275, China; Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University, Zhuhai 510982, China.

出版信息

Sci Total Environ. 2023 Sep 15;891:164379. doi: 10.1016/j.scitotenv.2023.164379. Epub 2023 May 20.

Abstract

Reactive nitrogen (Nr) cycle in the atmosphere has an important affection on terrestrial ecosystems, which has not been fully understood and its response to the future emissions control strategy is not clear. Taking the Yangtze River Delta (YRD) as an example, we explored the regional Nr cycle (emissions, concentrations, and depositions) and its source apportionment in the atmosphere in January (winter) and July (summer) 2015 and projected its changes under emissions control by 2030 using the CMAQ model. We examined the characteristics of Nr cycle and found that Nr suspends in the air mainly as NO, NO, and NH gases and deposits to the earth's surface mainly as HNO, NH, NO, and NH. Due to the higher NO than NH emissions, oxidized nitrogen (OXN) but not reduced nitrogen (RDN) is the major component in Nr concentration and deposition, especially in January. Nr concentration and deposition show an inverse correlation, with a high concentration in January and low in July but the opposite for deposition. We further apportioned the regional Nr sources for both concentration and deposition using the Integrated Source Apportionment Method (ISAM) incorporated in the CMAQ model. It shows that local emissions are the major contributors and this characteristic is more significant in concentration than deposition, for RDN than OXN species, and in July than in January. The contribution from North China (NC) is important for Nr in YRD, especially in January. In addition, we revealed the response of Nr concentration and deposition to the emission control to achieve the target of carbon peak in the year 2030. After the emission reduction, the relative responses of OXN concentration and deposition are generally about 100 % to the reduction of NO emissions (50 %), while the relative responses of RDN concentration are higher than 100 % and the relative responses of RDN deposition are significantly lower than 100 % to the reduction of NH emissions (22 %). Consequently, RDN will become the major component in Nr deposition. The smaller reduction of RDN wet deposition than sulfur wet deposition and OXN wet deposition will raise the pH of precipitation and help alleviate the acid rain problem, especially in July.

摘要

大气中的活性氮(Nr)循环对陆地生态系统有重要影响,但尚未被充分认识,其对未来排放控制策略的响应尚不清楚。以长江三角洲(YRD)为例,我们利用 CMAQ 模型,于 2015 年 1 月(冬季)和 7 月(夏季)探索了该地区大气中的 Nr 循环(排放、浓度和沉积)及其来源,并预测了 2030 年排放控制下的变化。我们研究了 Nr 循环的特征,发现 Nr 主要以 NO、NO 和 NH 气体的形式悬浮在空气中,并主要以 HNO、NH、NO 和 NH 的形式沉积到地球表面。由于较高的 NO 比 NH 排放,氧化氮(OXN)而不是还原氮(RDN)是 Nr 浓度和沉积的主要成分,尤其是在 1 月。Nr 浓度和沉积呈反比关系,1 月浓度高,7 月沉积低,但反之亦然。我们进一步利用 CMAQ 模型中集成的源分配方法(ISAM)对区域 Nr 源进行了分配。结果表明,本地排放是主要贡献者,这种特征在浓度中比沉积中更为显著,对于 RDN 比 OXN 物种更为显著,在 7 月比在 1 月更为显著。华北(NC)对 YRD 的 Nr 有重要贡献,尤其是在 1 月。此外,我们揭示了 Nr 浓度和沉积对实现 2030 年碳峰值排放控制的响应。减排后,OXN 浓度和沉积的相对响应一般约为 NO 排放减少(50%)的 100%,而 RDN 浓度的相对响应高于 100%,RDN 沉积的相对响应明显低于 NH 排放减少(22%)的 100%。因此,RDN 将成为 Nr 沉积的主要成分。RDN 湿沉积比硫湿沉积和 OXN 湿沉积减少得少,将提高降水的 pH 值,有助于缓解酸雨问题,尤其是在 7 月。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验