Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416004, Maharashtra, (M.S.), India.
Department of Microbiology, Shivaji University, Kolhapur 416004, Maharashtra (MS), India.
Int J Biol Macromol. 2023 Jul 1;242(Pt 3):124880. doi: 10.1016/j.ijbiomac.2023.124880. Epub 2023 May 20.
Amyloid beta (Aβ) peptide aggregates rapidly into the soluble oligomers, protofibrils and fibrils to form senile plaques, a neurotoxic component and pathological hallmark of Alzheimer's disease (AD). Experimentally, it has been demonstrated the inhibition of an early stages of Aβ aggregation by a dipeptide D-Trp-Aib inhibitor, but its molecular mechanism is still unclear. Hence, in the present study, we used molecular docking and molecular dynamics (MD) simulations to explore the molecular mechanism of inhibition of an early oligomerization and destabilization of preformed Aβ protofibril by D-Trp-Aib. Molecular docking study showed that the D-Trp-Aib binds at the aromatic (Phe19, Phe20) region of Aβ monomer, Aβ fibril and hydrophobic core of Aβ protofibril. MD simulations revealed the binding of D-Trp-Aib at the aggregation prone region (Lys16-Glu22) resulted in the stabilization of Aβ monomer by π-π stacking interactions between Tyr10 and indol ring of D-Trp-Aib, which decreases the β-sheet content and increases the α-helices. The interaction between Lys28 of Aβ monomer to D-Trp-Aib could be responsible to block the initial nucleation and may impede the fibril growth and elongation. The loss of hydrophobic contacts between two β-sheets of Aβ protofibril upon binding of D-Trp-Aib at the hydrophobic cavity resulted in the partial opening of β-sheets. This also disrupts a salt bridge (Asp23-Lys28) leading to the destabilization of Aβ protofibril. Binding energy calculations revealed that van der Waals and electrostatic interactions maximally favours the binding of D-Trp-Aib to Aβ monomer and Aβ protofibril respectively. The residues Tyr10, Phe19, Phe20, Ala21, Glu22, Lys28 of Aβ monomer, whereas Leu17, Val18, Phe19, Val40, Ala42 of protofibril contributing for the interactions with D-Trp-Aib. Thus, the present study provides structural insights into the inhibition of an early oligomerization of Aβ peptides and destabilization of Aβ protofibril, which could be useful to design novel inhibitors for the treatment of AD.
淀粉样β(Aβ)肽迅速聚集形成可溶性寡聚物、原纤维和纤维,形成老年斑,这是阿尔茨海默病(AD)的神经毒性成分和病理标志。实验表明,二肽 D-Trp-Aib 抑制剂可以抑制 Aβ聚集的早期阶段,但分子机制尚不清楚。因此,在本研究中,我们使用分子对接和分子动力学(MD)模拟来探索 D-Trp-Aib 抑制 Aβ早期寡聚化和原纤维不稳定的分子机制。分子对接研究表明,D-Trp-Aib 结合在 Aβ单体、Aβ纤维和 Aβ原纤维疏水区的芳香(Phe19、Phe20)区域。MD 模拟揭示了 D-Trp-Aib 结合在聚集倾向区域(Lys16-Glu22)导致 Tyr10 和 D-Trp-Aib 的吲哚环之间的π-π堆积相互作用稳定 Aβ单体,从而降低β-折叠含量并增加α-螺旋。Aβ单体中 Lys28 与 D-Trp-Aib 的相互作用可能负责阻止初始成核,并可能阻碍纤维的生长和伸长。D-Trp-Aib 结合到疏水性腔中导致 Aβ原纤维的两个β-片层之间的疏水接触丢失,从而导致β-片层的部分打开。这也破坏了盐桥(Asp23-Lys28),导致 Aβ原纤维的不稳定。结合能计算表明,范德华力和静电相互作用最大程度地有利于 D-Trp-Aib 与 Aβ单体和 Aβ原纤维的结合。Aβ单体中的残基 Tyr10、Phe19、Phe20、Ala21、Glu22、Lys28,而原纤维中的残基 Leu17、Val18、Phe19、Val40、Ala42 有助于与 D-Trp-Aib 相互作用。因此,本研究为 Aβ肽早期寡聚化和 Aβ原纤维不稳定的抑制提供了结构见解,这可能有助于设计用于治疗 AD 的新型抑制剂。