Hanoi University of Science and Technology, Hanoi, 11615, Vietnam.
Shibaura Institute of Technology, Saitama, 337-8570, Japan.
Sci Rep. 2023 May 22;13(1):8242. doi: 10.1038/s41598-023-34491-3.
Pneumatic artificial muscle (PAM) is a potential actuator in human-robot interaction systems, especially rehabilitation systems. However, PAM is a nonlinear actuator with uncertainty and a considerable delay in characteristics, making control challenging. This study presents a discrete-time sliding mode control approach combined with the adaptive fuzzy algorithm (AFSMC) to deal with the unknown disturbance of the PAM-based actuator. The developed fuzzy logic system has parameter vectors of the component rules that are automatically updated by an adaptive law. Consequently, the developed fuzzy logic system can reasonably approximate the system disturbance. When operating the PAM-based system in multi-scenario studies, experimental results confirm the efficiency of the proposed strategy.
气动人工肌肉(PAM)是人机交互系统中(特别是康复系统)的一种潜在执行器。然而,PAM 是一种具有不确定性和相当大的特性延迟的非线性执行器,使得控制具有挑战性。本研究提出了一种离散时间滑模控制方法,结合自适应模糊算法(AFSMC),以应对基于 PAM 的执行器的未知干扰。所开发的模糊逻辑系统具有组件规则的参数向量,这些参数向量通过自适应律自动更新。因此,所开发的模糊逻辑系统可以合理地逼近系统干扰。在多场景研究中运行基于 PAM 的系统时,实验结果证实了所提出策略的有效性。