Suppr超能文献

使用广义线性模型捕捉适应二阶统计量的多个时间尺度:增益缩放和分数微分

Capturing Multiple Timescales of Adaptation to Second-Order Statistics With Generalized Linear Models: Gain Scaling and Fractional Differentiation.

作者信息

Latimer Kenneth W, Fairhall Adrienne L

机构信息

Department of Neurobiology, University of Chicago, Chicago, IL, United States.

Department of Physiology & Biophysics, University of Washington, Seattle, WA, United States.

出版信息

Front Syst Neurosci. 2020 Sep 9;14:60. doi: 10.3389/fnsys.2020.00060. eCollection 2020.

Abstract

Single neurons can dynamically change the gain of their spiking responses to take into account shifts in stimulus variance. Moreover, gain adaptation can occur across multiple timescales. Here, we examine the ability of a simple statistical model of spike trains, the generalized linear model (GLM), to account for these adaptive effects. The GLM describes spiking as a Poisson process whose rate depends on a linear combination of the stimulus and recent spike history. The GLM successfully replicates gain scaling observed in Hodgkin-Huxley simulations of cortical neurons that occurs when the ratio of spike-generating potassium and sodium conductances approaches one. Gain scaling in the GLM depends on the length and shape of the spike history filter. Additionally, the GLM captures adaptation that occurs over multiple timescales as a fractional derivative of the stimulus envelope, which has been observed in neurons that include long timescale afterhyperpolarization conductances. Fractional differentiation in GLMs requires long spike history that span several seconds. Together, these results demonstrate that the GLM provides a tractable statistical approach for examining single-neuron adaptive computations in response to changes in stimulus variance.

摘要

单个神经元可以动态改变其放电反应的增益,以考虑刺激方差的变化。此外,增益适应可以在多个时间尺度上发生。在这里,我们研究了一种简单的脉冲序列统计模型——广义线性模型(GLM),以解释这些适应性效应的能力。GLM将放电描述为一个泊松过程,其速率取决于刺激和近期脉冲历史的线性组合。GLM成功地复制了在皮质神经元的霍奇金-赫胥黎模拟中观察到的增益缩放,这种缩放发生在产生脉冲的钾离子和钠离子电导之比接近1时。GLM中的增益缩放取决于脉冲历史滤波器的长度和形状。此外,GLM将在多个时间尺度上发生的适应捕获为刺激包络的分数导数,这在包括长时间尺度超极化后电导的神经元中已经观察到。GLM中的分数微分需要跨越几秒的长脉冲历史。总之,这些结果表明,GLM为研究单个神经元对刺激方差变化的适应性计算提供了一种易于处理的统计方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b60a/7509073/11a3b3afcced/fnsys-14-00060-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验