Department of Statistics, University of California, Irvine, Irvine, USA.
Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, USA.
BMC Med Res Methodol. 2023 May 22;23(1):122. doi: 10.1186/s12874-023-01936-2.
To estimate causal effects, analysts performing observational studies in health settings utilize several strategies to mitigate bias due to confounding by indication. There are two broad classes of approaches for these purposes: use of confounders and instrumental variables (IVs). Because such approaches are largely characterized by untestable assumptions, analysts must operate under an indefinite paradigm that these methods will work imperfectly. In this tutorial, we formalize a set of general principles and heuristics for estimating causal effects in the two approaches when the assumptions are potentially violated. This crucially requires reframing the process of observational studies as hypothesizing potential scenarios where the estimates from one approach are less inconsistent than the other. While most of our discussion of methodology centers around the linear setting, we touch upon complexities in non-linear settings and flexible procedures such as target minimum loss-based estimation and double machine learning. To demonstrate the application of our principles, we investigate the use of donepezil off-label for mild cognitive impairment. We compare and contrast results from confounder and IV methods, traditional and flexible, within our analysis and to a similar observational study and clinical trial.
为了估计因果效应,在健康环境中进行观察性研究的分析人员采用了几种策略来减轻由于指示性混杂引起的偏差。为此目的有两种广泛的方法类别:使用混杂因素和工具变量(IV)。由于这些方法在很大程度上具有不可检验的假设,因此分析人员必须在这些方法可能无法完美运作的不确定范式下进行操作。在本教程中,我们在假设可能违反的情况下,将一组用于估计两种方法中因果效应的一般原则和启发式方法形式化。这就需要将观察性研究的过程重新构建为假设一个潜在的情景,即一种方法的估计比另一种方法更不一致。虽然我们的方法讨论大部分集中在线性设置,但我们也触及了非线性设置和灵活程序(如基于目标最小损失的估计和双机器学习)的复杂性。为了演示我们的原则的应用,我们研究了多奈哌齐在轻度认知障碍中的非标签使用。我们在分析中比较和对比了混杂因素和 IV 方法、传统方法和灵活方法的结果,并与类似的观察性研究和临床试验进行了比较。