Clinical Research and Biostatistics Department, Centre Léon Bérard, Lyon, France.
UMR CNRS 5558 LBBE, Claude Bernard Lyon 1 University, Villeurbanne, France.
J Natl Cancer Inst. 2023 Aug 8;115(8):971-980. doi: 10.1093/jnci/djad092.
Real-world data studies usually consider biases related to measured confounders. We emulate a target trial implementing study design principles of randomized trials to observational studies; controlling biases related to selection, especially immortal time; and measured confounders.
This comprehensive analysis emulating a randomized clinical trial compared overall survival in patients with HER2-negative metastatic breast cancer (MBC), receiving as first-line treatment, either paclitaxel alone or combined to bevacizumab. We used data from 5538 patients extracted from the Epidemiological Strategy and Medical Economics-MBC cohort to emulate a target trial using advanced statistical adjustment techniques including stabilized inverse-probability weighting and G-computation, dealing with missing data with multiple imputation, and performing a quantitative bias analysis for residual bias due to unmeasured confounders.
Emulation led to 3211 eligible patients, and overall survival estimates achieved with advanced statistical methods favored the combination therapy. Real-world effect sizes were close to that assessed in the existing E2100 randomized clinical trial (hazard ratio = 0.88, P = .16), but the increased sample size allowed to achieve a higher level of precision in real-world estimates (ie, reduced confidence intervals). Quantitative bias analysis confirmed the robustness of the results with respect to potential unmeasured confounding.
Target trial emulation with advanced statistical adjustment techniques is a promising approach to investigate long-term impact of innovative therapies in the French Epidemiological Strategy and Medical Economics-MBC cohort while minimizing biases and provides opportunities for comparative efficacy through the synthetic control arms provided.
clinicaltrials.gov Identifier NCT03275311.
真实世界研究通常考虑与测量混杂因素相关的偏倚。我们模拟了一项目标试验,实施了随机临床试验向观察性研究的设计原则;控制与选择相关的偏倚,特别是无事件时间;以及测量混杂因素。
这项综合分析模拟了一项随机临床试验,比较了接受一线治疗的 HER2 阴性转移性乳腺癌(MBC)患者的总生存期,一线治疗分别为紫杉醇单药或联合贝伐珠单抗。我们使用了从 5538 名患者中提取的来自流行病学策略和医学经济学-MBC 队列的数据,使用先进的统计调整技术模拟目标试验,包括稳定的逆概率加权和 G 计算,处理缺失数据的多重插补,并进行残留偏倚的定量偏差分析由于未测量的混杂因素。
模拟得出 3211 名合格患者,使用先进的统计方法得出的总生存期估计值有利于联合治疗。真实世界的效果大小与现有的 E2100 随机临床试验评估的结果相近(风险比=0.88,P=0.16),但增加的样本量使得在真实世界的估计中达到了更高的精度水平(即缩小了置信区间)。定量偏差分析证实了结果对于潜在未测量混杂的稳健性。
使用先进的统计调整技术进行目标试验模拟是一种很有前途的方法,可以在法国流行病学策略和医学经济学-MBC 队列中研究创新疗法的长期影响,同时最大限度地减少偏倚,并通过提供合成对照臂提供比较疗效的机会。
clinicaltrials.gov 标识符 NCT03275311。