Department of Psychology, University of California, Davis, Davis, CA, USA.
Behav Res Methods. 2024 Mar;56(3):1953-1967. doi: 10.3758/s13428-023-02128-y. Epub 2023 May 23.
Valid inference can be drawn from a random-effects model for repeated measures that are incomplete if whether the data are missing or not, known as missingness, is independent of the missing data. Data that are missing completely at random or missing at random are two data types for which missingness is ignorable. Given ignorable missingness, statistical inference can proceed without addressing the source of the missing data in the model. If the missingness is not ignorable, however, recommendations are to fit multiple models that represent different plausible explanations of the missing data. A popular choice in methods for evaluating nonignorable missingness is a random-effects pattern-mixture model that extends a random-effects model to include one or more between-subjects variables that represent fixed patterns of missing data. Generally straightforward to implement, a fixed pattern-mixture model is one among several options for assessing nonignorable missingness, and when it is used as the sole model to address nonignorable missingness, understanding the impact of missingness is greatly limited. This paper considers alternatives to a fixed pattern-mixture model for nonignorable missingness that are generally straightforward to fit and encourage researchers to give greater attention to the possible impact of nonignorable missingness in longitudinal data analysis. Patterns of both monotonic and non-monotonic (intermittently) missing data are addressed. Empirical longitudinal psychiatric data are used to illustrate the models. A small Monte Carlo data simulation study is presented to help illustrate the utility of such methods.
如果缺失数据是否缺失,即缺失情况是否与缺失数据无关,是可以从重复测量的随机效应模型中进行有效推断的。完全随机缺失或随机缺失是两种缺失数据类型,其中缺失情况是可以忽略的。在缺失情况可以忽略的情况下,无需在模型中解决缺失数据的来源,就可以进行统计推断。然而,如果缺失情况不可忽略,建议拟合多个代表缺失数据不同可能解释的模型。在评估不可忽略缺失情况的方法中,一种流行的选择是随机效应模式混合模型,它将随机效应模型扩展到包含一个或多个代表缺失数据固定模式的受试者间变量。固定模式混合模型通常易于实现,是评估不可忽略缺失情况的几种选择之一,当它被用作解决不可忽略缺失情况的唯一模型时,对缺失情况的影响的理解将受到极大限制。本文考虑了用于不可忽略缺失情况的固定模式混合模型的替代方法,这些方法通常易于拟合,并鼓励研究人员更加关注不可忽略缺失情况对纵向数据分析的可能影响。本文同时考虑了单调和非单调(间歇性)缺失数据的模式。使用经验性纵向精神病学数据来说明这些模型。提出了一个小型的蒙特卡罗数据模拟研究,以帮助说明这些方法的实用性。