Suppr超能文献

三种不同三维高斯滤波后重建对降噪门控心肌灌注显像图像质量影响的观测性研究。

Observer studies of image quality of denoising reduced-count cardiac single photon emission computed tomography myocardial perfusion imaging by three-dimensional Gaussian post-reconstruction filtering and deep learning.

机构信息

Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.

Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA.

出版信息

J Nucl Cardiol. 2023 Dec;30(6):2427-2437. doi: 10.1007/s12350-023-03295-3. Epub 2023 May 23.

Abstract

BACKGROUND

The aim of this research was to asses perfusion-defect detection-accuracy by human observers as a function of reduced-counts for 3D Gaussian post-reconstruction filtering vs deep learning (DL) denoising to determine if there was improved performance with DL.

METHODS

SPECT projection data of 156 normally interpreted patients were used for these studies. Half were altered to include hybrid perfusion defects with defect presence and location known. Ordered-subset expectation-maximization (OSEM) reconstruction was employed with the optional correction of attenuation (AC) and scatter (SC) in addition to distance-dependent resolution (RC). Count levels varied from full-counts (100%) to 6.25% of full-counts. The denoising strategies were previously optimized for defect detection using total perfusion deficit (TPD). Four medical physicist (PhD) and six physician (MD) observers rated the slices using a graphical user interface. Observer ratings were analyzed using the LABMRMC multi-reader, multi-case receiver-operating-characteristic (ROC) software to calculate and compare statistically the area-under-the-ROC-curves (AUCs).

RESULTS

For the same count-level no statistically significant increase in AUCs for DL over Gaussian denoising was determined when counts were reduced to either the 25% or 12.5% of full-counts. The average AUC for full-count OSEM with solely RC and Gaussian filtering was lower than for the strategies with AC and SC, except for a reduction to 6.25% of full-counts, thus verifying the utility of employing AC and SC with RC.

CONCLUSION

We did not find any indication that at the dose levels investigated and with the DL network employed, that DL denoising was superior in AUC to optimized 3D post-reconstruction Gaussian filtering.

摘要

背景

本研究旨在评估 3D 高斯后重建滤波与深度学习(DL)去噪的减少计数对人类观察者灌注缺陷检测准确性的影响,以确定 DL 是否能提高性能。

方法

这些研究使用了 156 名正常解释的患者的 SPECT 投影数据。一半的数据被改变,包括具有已知存在和位置的混合灌注缺陷。除了距离相关的分辨率(RC)外,还使用有序子集期望最大化(OSEM)重建来进行可选的衰减(AC)和散射(SC)校正。计数水平从全计数(100%)到全计数的 6.25%不等。去噪策略是使用总灌注缺陷(TPD)针对缺陷检测进行了预先优化。四位医学物理学家(博士)和六位医师(MD)观察者使用图形用户界面对切片进行评分。使用 LABMRMC 多读者、多病例接收器操作特征(ROC)软件分析观察者评分,以计算和比较 ROC 曲线下的面积(AUC)的统计数据。

结果

在相同的计数水平下,当计数减少到全计数的 25%或 12.5%时,与高斯去噪相比,DL 没有在 AUC 上表现出统计学上的显著增加。仅使用 RC 和高斯滤波的全计数 OSEM 的平均 AUC 低于使用 AC 和 SC 的策略,除了减少到全计数的 6.25%,这验证了使用 AC 和 SC 与 RC 的效用。

结论

我们没有发现任何迹象表明,在所研究的剂量水平和所使用的 DL 网络下,DL 去噪在 AUC 方面优于经过优化的 3D 后重建高斯滤波。

相似文献

2
Improving detection accuracy of perfusion defect in standard dose SPECT-myocardial perfusion imaging by deep-learning denoising.
J Nucl Cardiol. 2022 Oct;29(5):2340-2349. doi: 10.1007/s12350-021-02676-w. Epub 2021 Jul 19.
3
Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging.
Med Phys. 2021 Jan;48(1):156-168. doi: 10.1002/mp.14577. Epub 2020 Nov 23.
4
Retrospective fractional dose reduction in Tc-99m cardiac perfusion SPECT/CT patients: A human and model observer study.
J Nucl Cardiol. 2021 Apr;28(2):624-637. doi: 10.1007/s12350-019-01743-7. Epub 2019 May 10.
6
Comparison of deep learning-based denoising methods in cardiac SPECT.
EJNMMI Phys. 2023 Feb 8;10(1):9. doi: 10.1186/s40658-023-00531-0.
7
Investigation of dose reduction in cardiac perfusion SPECT via optimization and choice of the image reconstruction strategy.
J Nucl Cardiol. 2018 Dec;25(6):2117-2128. doi: 10.1007/s12350-017-0920-1. Epub 2017 May 23.
9
Improving Diagnostic Accuracy in Low-Dose SPECT Myocardial Perfusion Imaging With Convolutional Denoising Networks.
IEEE Trans Med Imaging. 2020 Sep;39(9):2893-2903. doi: 10.1109/TMI.2020.2979940. Epub 2020 Mar 10.

引用本文的文献

1
AI in SPECT Imaging: Opportunities and Challenges.
Semin Nucl Med. 2025 May;55(3):294-312. doi: 10.1053/j.semnuclmed.2025.03.005. Epub 2025 Apr 3.
3
Deep learning-based multi-frequency denoising for myocardial perfusion SPECT.
EJNMMI Phys. 2024 Oct 2;11(1):80. doi: 10.1186/s40658-024-00680-w.
4
DEMIST: A Deep-Learning-Based Detection-Task-Specific Denoising Approach for Myocardial Perfusion SPECT.
IEEE Trans Radiat Plasma Med Sci. 2024 Apr;8(4):439-450. doi: 10.1109/trpms.2024.3379215. Epub 2024 Mar 25.

本文引用的文献

1
RESEARCH PROGRESS OF DEEP LEARNING IN LOW-DOSE CT IMAGE DENOISING.
Radiat Prot Dosimetry. 2023 Mar 17;199(4):337-346. doi: 10.1093/rpd/ncac284.
2
Deep learning applications in myocardial perfusion imaging, a systematic review and meta-analysis.
Inform Med Unlocked. 2022;32:101055. doi: 10.1016/j.imu.2022.101055.
3
Deep Learning-Based Attenuation Correction Improves Diagnostic Accuracy of Cardiac SPECT.
J Nucl Med. 2023 Mar;64(3):472-478. doi: 10.2967/jnumed.122.264429. Epub 2022 Sep 22.
4
Investigating the limited performance of a deep-learning-based SPECT denoising approach: An observer-study-based characterization.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12035. doi: 10.1117/12.2613134. Epub 2022 Apr 4.
5
Nuclear Medicine and Artificial Intelligence: Best Practices for Evaluation (the RELAINCE Guidelines).
J Nucl Med. 2022 Sep;63(9):1288-1299. doi: 10.2967/jnumed.121.263239. Epub 2022 May 26.
8
Applications of artificial intelligence in nuclear medicine image generation.
Quant Imaging Med Surg. 2021 Jun;11(6):2792-2822. doi: 10.21037/qims-20-1078.
9
Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging.
Med Phys. 2021 Jan;48(1):156-168. doi: 10.1002/mp.14577. Epub 2020 Nov 23.
10
PET Image Denoising Using a Deep Neural Network Through Fine Tuning.
IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):153-161. doi: 10.1109/TRPMS.2018.2877644. Epub 2018 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验