SVcnn:一种基于深度学习的准确检测基于长读数据的结构变异的方法。

SVcnn: an accurate deep learning-based method for detecting structural variation based on long-read data.

机构信息

School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi'an, 710072, China.

出版信息

BMC Bioinformatics. 2023 May 23;24(1):213. doi: 10.1186/s12859-023-05324-x.

Abstract

BACKGROUND

Structural variations (SVs) refer to variations in an organism's chromosome structure that exceed a length of 50 base pairs. They play a significant role in genetic diseases and evolutionary mechanisms. While long-read sequencing technology has led to the development of numerous SV caller methods, their performance results have been suboptimal. Researchers have observed that current SV callers often miss true SVs and generate many false SVs, especially in repetitive regions and areas with multi-allelic SVs. These errors are due to the messy alignments of long-read data, which are affected by their high error rate. Therefore, there is a need for a more accurate SV caller method.

RESULT

We propose a new method-SVcnn, a more accurate deep learning-based method for detecting SVs by using long-read sequencing data. We run SVcnn and other SV callers in three real datasets and find that SVcnn improves the F1-score by 2-8% compared with the second-best method when the read depth is greater than 5×. More importantly, SVcnn has better performance for detecting multi-allelic SVs.

CONCLUSIONS

SVcnn is an accurate deep learning-based method to detect SVs. The program is available at https://github.com/nwpuzhengyan/SVcnn .

摘要

背景

结构变异(SV)是指生物体染色体结构中超过 50 个碱基对的变异。它们在遗传疾病和进化机制中起着重要作用。虽然长读测序技术已经开发出许多 SV 调用方法,但它们的性能结果并不理想。研究人员观察到,目前的 SV 调用器经常错过真正的 SV,并产生许多假的 SV,尤其是在重复区域和具有多等位 SV 的区域。这些错误是由于长读数据的混乱对齐,这受到其高错误率的影响。因此,需要一种更准确的 SV 调用器方法。

结果

我们提出了一种新的方法-SVcnn,这是一种基于深度学习的更准确的方法,用于使用长读测序数据检测 SV。我们在三个真实数据集上运行 SVcnn 和其他 SV 调用器,发现当读深度大于 5×时,SVcnn 比第二好的方法提高了 2-8%的 F1 分数。更重要的是,SVcnn 在检测多等位 SV 方面具有更好的性能。

结论

SVcnn 是一种基于深度学习的准确的检测 SV 的方法。该程序可在 https://github.com/nwpuzhengyan/SVcnn 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f97/10207598/d208d1c7af50/12859_2023_5324_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索