School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa370.
Short read whole genome sequencing has become widely used to detect structural variants in human genetic studies and clinical practices. However, accurate detection of structural variants is a challenging task. Especially existing structural variant detection approaches produce a large proportion of incorrect calls, so effective structural variant filtering approaches are urgently needed. In this study, we propose a novel deep learning-based approach, DeepSVFilter, for filtering structural variants in short read whole genome sequencing data. DeepSVFilter encodes structural variant signals in the read alignments as images and adopts the transfer learning with pre-trained convolutional neural networks as the classification models, which are trained on the well-characterized samples with known high confidence structural variants. We use two well-characterized samples to demonstrate DeepSVFilter's performance and its filtering effect coupled with commonly used structural variant detection approaches. The software DeepSVFilter is implemented using Python and freely available from the website at https://github.com/yongzhuang/DeepSVFilter.
短读全基因组测序已广泛用于人类遗传研究和临床实践中的结构变异检测。然而,准确检测结构变异是一项具有挑战性的任务。特别是现有的结构变异检测方法会产生大量错误的调用,因此迫切需要有效的结构变异过滤方法。在这项研究中,我们提出了一种基于深度学习的新方法 DeepSVFilter,用于过滤短读全基因组测序数据中的结构变异。DeepSVFilter 将读对齐中的结构变异信号编码为图像,并采用带有预训练卷积神经网络的迁移学习作为分类模型,这些模型是在具有已知高置信度结构变异的特征良好的样本上进行训练的。我们使用两个特征良好的样本来演示 DeepSVFilter 的性能及其与常用结构变异检测方法相结合的过滤效果。DeepSVFilter 软件是使用 Python 实现的,并可在网站 https://github.com/yongzhuang/DeepSVFilter 上免费获取。
Brief Bioinform. 2021-7-20
BMC Bioinformatics. 2023-3-28
Bioinformatics. 2018-5-15
Nat Biotechnol. 2018-9-24
BMC Bioinformatics. 2021-12-2
Genomics Inform. 2024-12-3
Genomics Proteomics Bioinformatics. 2024-5-9
Front Genet. 2024-1-25
Brief Bioinform. 2023-9-20
BMC Bioinformatics. 2023-5-23
BMC Bioinformatics. 2023-4-20
BMC Bioinformatics. 2023-3-28