文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习方法在短读测序数据中过滤结构变异。

A deep learning approach for filtering structural variants in short read sequencing data.

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.

School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

出版信息

Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa370.


DOI:10.1093/bib/bbaa370
PMID:33378767
Abstract

Short read whole genome sequencing has become widely used to detect structural variants in human genetic studies and clinical practices. However, accurate detection of structural variants is a challenging task. Especially existing structural variant detection approaches produce a large proportion of incorrect calls, so effective structural variant filtering approaches are urgently needed. In this study, we propose a novel deep learning-based approach, DeepSVFilter, for filtering structural variants in short read whole genome sequencing data. DeepSVFilter encodes structural variant signals in the read alignments as images and adopts the transfer learning with pre-trained convolutional neural networks as the classification models, which are trained on the well-characterized samples with known high confidence structural variants. We use two well-characterized samples to demonstrate DeepSVFilter's performance and its filtering effect coupled with commonly used structural variant detection approaches. The software DeepSVFilter is implemented using Python and freely available from the website at https://github.com/yongzhuang/DeepSVFilter.

摘要

短读全基因组测序已广泛用于人类遗传研究和临床实践中的结构变异检测。然而,准确检测结构变异是一项具有挑战性的任务。特别是现有的结构变异检测方法会产生大量错误的调用,因此迫切需要有效的结构变异过滤方法。在这项研究中,我们提出了一种基于深度学习的新方法 DeepSVFilter,用于过滤短读全基因组测序数据中的结构变异。DeepSVFilter 将读对齐中的结构变异信号编码为图像,并采用带有预训练卷积神经网络的迁移学习作为分类模型,这些模型是在具有已知高置信度结构变异的特征良好的样本上进行训练的。我们使用两个特征良好的样本来演示 DeepSVFilter 的性能及其与常用结构变异检测方法相结合的过滤效果。DeepSVFilter 软件是使用 Python 实现的,并可在网站 https://github.com/yongzhuang/DeepSVFilter 上免费获取。

相似文献

[1]
A deep learning approach for filtering structural variants in short read sequencing data.

Brief Bioinform. 2021-7-20

[2]
Automated filtering of genome-wide large deletions through an ensemble deep learning framework.

Methods. 2022-10

[3]
NPSV-deep: a deep learning method for genotyping structural variants in short read genome sequencing data.

Bioinformatics. 2024-3-4

[4]
CSV-Filter: a deep learning-based comprehensive structural variant filtering method for both short and long reads.

Bioinformatics. 2024-9-2

[5]
tarSVM: Improving the accuracy of variant calls derived from microfluidic PCR-based targeted next generation sequencing using a support vector machine.

BMC Bioinformatics. 2016-6-10

[6]
cnnLSV: detecting structural variants by encoding long-read alignment information and convolutional neural network.

BMC Bioinformatics. 2023-3-28

[7]
SV2: accurate structural variation genotyping and de novo mutation detection from whole genomes.

Bioinformatics. 2018-5-15

[8]
A universal SNP and small-indel variant caller using deep neural networks.

Nat Biotechnol. 2018-9-24

[9]
BreakNet: detecting deletions using long reads and a deep learning approach.

BMC Bioinformatics. 2021-12-2

[10]
Longshot enables accurate variant calling in diploid genomes from single-molecule long read sequencing.

Nat Commun. 2019-10-11

引用本文的文献

[1]
Rare disease genomics and precision medicine.

Genomics Inform. 2024-12-3

[2]
CSV-Filter: a deep learning-based comprehensive structural variant filtering method for both short and long reads.

Bioinformatics. 2024-9-2

[3]
Pindel-TD: A Tandem Duplication Detector Based on A Pattern Growth Approach.

Genomics Proteomics Bioinformatics. 2024-5-9

[4]
Investigating structural variant, indel and single nucleotide polymorphism differentiation between locally adapted Atlantic salmon populations.

Evol Appl. 2024-3-14

[5]
Artificial intelligence and database for NGS-based diagnosis in rare disease.

Front Genet. 2024-1-25

[6]
Toward the functional interpretation of somatic structural variations: bulk- and single-cell approaches.

Brief Bioinform. 2023-9-20

[7]
SVcnn: an accurate deep learning-based method for detecting structural variation based on long-read data.

BMC Bioinformatics. 2023-5-23

[8]
Validation of genetic variants from NGS data using deep convolutional neural networks.

BMC Bioinformatics. 2023-4-20

[9]
cnnLSV: detecting structural variants by encoding long-read alignment information and convolutional neural network.

BMC Bioinformatics. 2023-3-28

[10]
Cue: a deep-learning framework for structural variant discovery and genotyping.

Nat Methods. 2023-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索