癌症中 G0 细胞周期停滞的基因组特征和治疗意义。
Genomic hallmarks and therapeutic implications of G0 cell cycle arrest in cancer.
机构信息
UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK.
Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
出版信息
Genome Biol. 2023 May 23;24(1):128. doi: 10.1186/s13059-023-02963-4.
BACKGROUND
Therapy resistance in cancer is often driven by a subpopulation of cells that are temporarily arrested in a non-proliferative G0 state, which is difficult to capture and whose mutational drivers remain largely unknown.
RESULTS
We develop methodology to robustly identify this state from transcriptomic signals and characterise its prevalence and genomic constraints in solid primary tumours. We show that G0 arrest preferentially emerges in the context of more stable, less mutated genomes which maintain TP53 integrity and lack the hallmarks of DNA damage repair deficiency, while presenting increased APOBEC mutagenesis. We employ machine learning to uncover novel genomic dependencies of this process and validate the role of the centrosomal gene CEP89 as a modulator of proliferation and G0 arrest capacity. Lastly, we demonstrate that G0 arrest underlies unfavourable responses to various therapies exploiting cell cycle, kinase signalling and epigenetic mechanisms in single-cell data.
CONCLUSIONS
We propose a G0 arrest transcriptional signature that is linked with therapeutic resistance and can be used to further study and clinically track this state.
背景
癌症的治疗耐药性通常是由一群暂时处于非增殖 G0 状态的细胞亚群驱动的,这些细胞很难被捕获,其突变驱动因素在很大程度上仍不清楚。
结果
我们开发了从转录组信号中稳健识别这种状态的方法,并描述了其在实体原发性肿瘤中的普遍性和基因组限制。我们表明,G0 阻滞优先出现在更稳定、突变较少的基因组中,这些基因组保持 TP53 完整性,缺乏 DNA 损伤修复缺陷的特征,同时表现出增加的 APOBEC 诱变。我们采用机器学习来揭示这个过程的新的基因组依赖性,并验证了中心体基因 CEP89 作为增殖和 G0 阻滞能力调节剂的作用。最后,我们证明了 G0 阻滞是导致各种利用细胞周期、激酶信号和表观遗传机制的治疗方法产生不良反应的基础,在单细胞数据中。
结论
我们提出了一个与治疗耐药性相关的 G0 阻滞转录特征,可以用于进一步研究和临床跟踪这种状态。