NORCE Climate & Environment - NORCE Norwegian Research Centre, Bergen, Norway.
Instituto de Quimica Fisica Rocasolano (IQFR), CSIC, Madrid, Spain.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0039023. doi: 10.1128/aem.00390-23. Epub 2023 May 24.
Protein hydrolysates made from marine by-products are very nutritious but frequently contain trimethylamine (TMA), which has an unattractive fish-like smell. Bacterial trimethylamine monooxygenases can oxidize TMA into the odorless trimethylamine -oxide (TMAO) and have been shown to reduce TMA levels in a salmon protein hydrolysate. To make the flavin-containing monooxygenase (FMO) Methylophaga aminisulfidivorans trimethylamine monooxygenase (mFMO) more suitable for industrial application, we engineered it using the Protein Repair One-Stop Shop (PROSS) algorithm. All seven mutant variants, containing 8 to 28 mutations, displayed increases in melting temperature of between 4.7°C and 9.0°C. The crystal structure of the most thermostable variant, mFMO_20, revealed the presence of four new stabilizing interhelical salt bridges, each involving a mutated residue. Finally, mFMO_20 significantly outperformed native mFMO in its ability to reduce TMA levels in a salmon protein hydrolysate at industrially relevant temperatures. Marine by-products are a high-quality source for peptide ingredients, but the unpleasant fishy odor caused by TMA limits their access to the food market. This problem can be mitigated by enzymatic conversion of TMA into the odorless TMAO. However, enzymes isolated from nature must be adapted to industrial requirements, such as the ability to tolerate high temperatures. This study has demonstrated that mFMO can be engineered to become more thermostable. Moreover, unlike the native enzyme, the best thermostable variant efficiently oxidized TMA in a salmon protein hydrolysate at industrial temperatures. Our results present an important next step toward the application of this novel and highly promising enzyme technology in marine biorefineries.
由海洋副产物制成的蛋白质水解物非常有营养,但经常含有三甲胺(TMA),具有令人不快的鱼腥味。细菌三甲胺单加氧酶可以将 TMA 氧化成无味的三甲胺 -氧化物(TMAO),并已被证明可以降低鲑鱼蛋白水解物中的 TMA 水平。为了使黄素单加氧酶(FMO)Methylophaga aminisulfidivorans trimethylamine monooxygenase (mFMO)更适合工业应用,我们使用 Protein Repair One-Stop Shop (PROSS)算法对其进行了工程改造。所有包含 8 到 28 个突变的七个突变体变体显示出 4.7°C 到 9.0°C 的熔点升高。最耐热变体 mFMO_20 的晶体结构揭示了存在四个新的稳定的跨螺旋盐桥,每个都涉及一个突变残基。最后,mFMO_20 在降低鲑鱼蛋白水解物中 TMA 水平的能力方面明显优于天然 mFMO,在工业相关温度下。海洋副产物是肽成分的高质量来源,但 TMA 引起的不愉快的鱼腥味限制了它们进入食品市场。这个问题可以通过酶促转化 TMA 成无味的 TMAO 来缓解。然而,从自然界中分离出来的酶必须适应工业要求,例如耐受高温的能力。本研究表明,mFMO 可以通过工程改造变得更耐热。此外,与天然酶不同,最佳耐热变体在工业温度下有效地氧化了鲑鱼蛋白水解物中的 TMA。我们的研究结果为在海洋生物精炼厂中应用这种新颖且极具前景的酶技术提供了重要的下一步。