Suppr超能文献

锥虫可变表面糖蛋白的翻译后修饰与细胞内运输

Posttranslational modification and intracellular transport of a trypanosome variant surface glycoprotein.

作者信息

Bangs J D, Andrews N W, Hart G W, Englund P T

出版信息

J Cell Biol. 1986 Jul;103(1):255-63. doi: 10.1083/jcb.103.1.255.

Abstract

After synthesis on membrane-bound ribosomes, the variant surface glycoprotein (VSG) of Trypanosoma brucei is modified by: (a) removal of an N-terminal signal sequence, (b) addition of N-linked oligosaccharides, and (c) replacement of a C-terminal hydrophobic peptide with a complex glycolipid that serves as a membrane anchor. Based on pulse-chase experiments with the variant ILTat-1.3, we now report the kinetics of three subsequent processing reactions. These are: (a) conversion of newly synthesized 56/58-kD polypeptides to mature 59-kD VSG, (b) transport to the cell surface, and (c) transport to a site where VSG is susceptible to endogenous membrane-bound phospholipase C. We found that the t 1/2 of all three of these processes is approximately 15 min. The comparable kinetics of these processes is compatible with the hypotheses that transport of VSG from the site of maturation to the cell surface is rapid and that VSG may not reach a phospholipase C-containing membrane until it arrives on the cell surface. Neither tunicamycin nor monensin blocks transport of VSG, but monensin completely inhibits conversion of 58-kD VSG to the mature 59-kD form. In the presence of tunicamycin, VSG is synthesized as a 54-kD polypeptide that is subsequently processed to a form with a slightly higher Mr. This tunicamycin-resistant processing suggests that modifications unrelated to N-linked oligosaccharides occur. Surprisingly, the rate of VSG transport is reduced, but not abolished, by dropping the chase temperature to as low as 10 degrees C.

摘要

在膜结合核糖体上合成后,布氏锥虫的可变表面糖蛋白(VSG)会发生以下修饰:(a)去除N端信号序列,(b)添加N-连接寡糖,以及(c)用作为膜锚定的复合糖脂取代C端疏水肽。基于对可变体ILTat-1.3的脉冲追踪实验,我们现在报告三个后续加工反应的动力学。这些反应是:(a)将新合成的56/58-kD多肽转化为成熟的59-kD VSG,(b)运输到细胞表面,以及(c)运输到VSG对内源膜结合磷脂酶C敏感的位点。我们发现这三个过程的半衰期均约为15分钟。这些过程相当的动力学与以下假设相符,即VSG从成熟位点运输到细胞表面的速度很快,并且VSG在到达细胞表面之前可能不会到达含有磷脂酶C的膜。衣霉素和莫能菌素均不阻断VSG的运输,但莫能菌素完全抑制58-kD VSG向成熟的59-kD形式的转化。在衣霉素存在下,VSG作为54-kD多肽合成,随后加工成分子量略高的形式。这种对衣霉素抗性的加工表明发生了与N-连接寡糖无关的修饰。令人惊讶的是,将追踪温度降至低至10℃会降低但不会消除VSG的运输速率。

相似文献

引用本文的文献

1
4
Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans.对人类致病的锥虫的毒力机制的比较分析
Front Cell Infect Microbiol. 2021 Apr 16;11:669079. doi: 10.3389/fcimb.2021.669079. eCollection 2021.

本文引用的文献

6
The molecular biology of trypanosomes.锥虫的分子生物学
Annu Rev Biochem. 1982;51:695-726. doi: 10.1146/annurev.bi.51.070182.003403.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验