Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China.
Astrobiology. 2023 Jul;23(7):769-785. doi: 10.1089/ast.2022.0075. Epub 2023 May 24.
Benefiting from their adaptability to extreme environments, subsurface microorganisms have been discovered in sedimentary and igneous rock environments on Earth and have been advocated as candidates in the search for extraterrestrial life. In this article, we study iron-mineralized microstructures in calcite-filled veins within basaltic pillows of the late Ladinian Fernazza group (Middle Triassic, 239 Ma) in Italy. These microstructures represent diverse morphologies, including filaments, globules, nodules, and micro-digitate stromatolites, which are similar to extant iron-oxidizing bacterial communities. analyses including Raman spectroscopy have been used to investigate the morphological, elemental, mineralogical, and bond-vibrational modes of the microstructures. According to the Raman spectral parameters, iron minerals preserve heterogeneous ultrastructures and crystallinities, coinciding with the morphologies and precursor microbial activities. The degree of crystallinity usually represents a microscale gradient decreasing toward previously existing microbial cells, revealing a decline of mineralization due to microbial activities. This study provides an analog of possible rock-dwelling subsurface life on Mars or icy moons and advocates Raman spectroscopy as an efficient tool for analyses. We put forward the concept that ultrastructural characteristics of minerals described by Raman spectral parameters corresponding to microscale morphologies could be employed as carbon-lean biosignatures in future space missions.
得益于其对极端环境的适应能力,地下微生物在地球的沉积岩和火成岩环境中被发现,并被提倡作为寻找外星生命的候选者。在本文中,我们研究了意大利晚拉迪尼亚期 Fernazza 群(中三叠世,239 Ma)玄武岩枕状体内方解石填充脉中的铁矿物化微观结构。这些微观结构代表了多种形态,包括丝状、球状、结节状和微指状叠层石,与现存的铁氧化细菌群落相似。我们使用包括拉曼光谱在内的分析方法研究了微观结构的形态、元素、矿物学和键振动模式。根据拉曼光谱参数,铁矿物保留了不均匀的超微结构和结晶度,与形态和先前存在的微生物活动一致。结晶度通常代表一个向先前存在的微生物细胞减小的微尺度梯度,表明由于微生物活动而导致的矿化程度下降。这项研究提供了火星或冰冷卫星上可能存在的地下生命的岩石居住的模拟,并提倡拉曼光谱作为分析的有效工具。我们提出了这样一个概念,即与微尺度形态相对应的拉曼光谱参数描述的矿物超微结构特征可以作为未来太空任务中贫碳生物特征的标志。