Suppr超能文献

利用毅力号火星车的同位分析识别古太古代生物特征:对火星科学和样本返回的展望。

Identification of Paleoarchean Biosignatures Using Colocated Perseverance Rover Analyses: Perspectives for Mars Science and Sample Return.

机构信息

Department of Earth Sciences, The Natural History Museum, London, United Kingdom.

Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy.

出版信息

Astrobiology. 2022 Sep;22(9):1143-1163. doi: 10.1089/ast.2022.0018. Epub 2022 Jul 21.

Abstract

The NASA Mars 2020 Perseverance rover is currently exploring Jezero crater, a Noachian-Hesperian locality that once hosted a delta-lake system with high habitability and biosignature preservation potential. Perseverance conducts detailed appraisals of rock targets using a synergistic payload capable of geological characterization from kilometer to micron scales. The highest-resolution textural and chemical information will be provided by correlated WATSON (imaging), SHERLOC (deep-UV Raman and fluorescence spectroscopy), and PIXL (X-ray lithochemistry) analyses, enabling the distributions of organic and mineral phases within rock targets to be comprehensively established. Herein, we analyze Paleoarchean microbial mats from the ∼3.42 Ga Buck Reef Chert (Barberton greenstone belt, South Africa)-considered astrobiological analogues for a putative ancient martian biosphere-following a WATSON-SHERLOC-PIXL protocol identical to that conducted by Perseverance on Mars during all sampling activities. Correlating deep-UV Raman and fluorescence spectroscopic mapping with X-ray elemental mapping, we show that the Perseverance payload has the capability to detect thermally and texturally mature organic materials of biogenic origin and can highlight organic-mineral interrelationships and elemental colocation at fine spatial scales. We also show that the Perseverance protocol obtains very similar results to high-performance laboratory imaging, Raman spectroscopy, and μXRF instruments. This is encouraging for the prospect of detecting microscale organic-bearing textural biosignatures on Mars using the correlative micro-analytical approach enabled by WATSON, SHERLOC, and PIXL; indeed, laminated, organic-bearing samples such as those studied herein are considered plausible analogues of biosignatures from a potential Noachian-Hesperian biosphere. Were similar materials discovered at Jezero crater, they would offer opportunities to reconstruct aspects of the early martian carbon cycle and search for potential fossilized traces of life in ancient paleoenvironments. Such samples should be prioritized for caching and eventual return to Earth.

摘要

美国国家航空航天局(NASA)的火星 2020 毅力号探测器目前正在探索杰泽罗陨石坑(Jezero crater),这是一处诺亚纪-赫斯珀纪(Noachian-Hesperian)的地方,曾经拥有一个高宜居性和生物特征保存潜力的三角洲湖泊系统。毅力号使用协同有效载荷对岩石目标进行详细评估,该有效载荷能够在千米到微米尺度上进行地质特征描述。最详细的纹理和化学信息将由相关的 WATSON(成像)、SHERLOC(深紫外拉曼和荧光光谱学)和 PIXL(X 射线岩化学)分析提供,从而能够全面建立岩石目标中有机和矿物相的分布。在此,我们分析了来自 34.2 亿年前的古太古代微生物垫,这些微生物垫来自于南非巴伯顿绿岩带的巴克礁燧石(Buck Reef Chert),被认为是火星古代生物层的天体生物学模拟物——在进行所有采样活动时,毅力号采用了与 WATSON-SHERLOC-PIXL 协议相同的 WATSON-SHERLOC-PIXL 协议对其进行了分析。通过将深紫外拉曼和荧光光谱图与 X 射线元素图进行关联,我们表明,毅力号有效载荷有能力检测出具有生物成因的热成熟和纹理成熟的有机材料,并能够突出有机-矿物的相互关系和元素共定位,空间分辨率精细。我们还表明,毅力号协议获得的结果与高性能实验室成像、拉曼光谱和 μXRF 仪器非常相似。这对于利用 WATSON、SHERLOC 和 PIXL 实现的相关微分析方法在火星上检测微尺度含有机纹理的生物特征信号的前景来说是令人鼓舞的;事实上,像本文研究的那些层状、含有机的样本被认为是潜在的诺亚纪-赫斯珀纪生物层的生物特征的合理模拟物。如果在杰泽罗陨石坑发现类似的物质,它们将提供重建早期火星碳循环的机会,并在古代古环境中寻找潜在的生命化石痕迹。此类样本应优先缓存,以便最终返回地球。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a1b/9508457/0bfd99ce2ae4/ast.2022.0018_figure1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验