Suppr超能文献

微生物生产和回收聚羟基脂肪酸酯的最新进展。

Recent updates to microbial production and recovery of polyhydroxyalkanoates.

作者信息

de Melo Rafaela Nery, de Souza Hassemer Guilherme, Steffens Juliana, Junges Alexander, Valduga Eunice

机构信息

Department of Food and Chemical Engineering, URI-Erechim, Sete de Setembro Av, Erechim, RS 162199709-910 Brazil.

出版信息

3 Biotech. 2023 Jun;13(6):204. doi: 10.1007/s13205-023-03633-9. Epub 2023 May 21.

Abstract

The increasing use of synthetic polymers and their disposal has raised concern due to their adverse effects on the environment. Thus, other sustainable alternatives to synthetic plastics have been sought, such as polyhydroxyalkanoates (PHAs), which are promising microbial polyesters, mainly due to their compostable nature, biocompatibility, thermostability, and resilience, making this biopolymer acceptable in several applications in the global market. The large-scale production of PHAs by microorganisms is still limited by the high cost of production compared to conventional plastics. This review reports some strategies mentioned in the literature aimed at production and recovery, paving the way for the bio-based economy. For this, some aspects of PHAs are addressed, such as synthesis, production systems, process control using by-products from industries, and advances and challenges in the downstream. The bioplastics properties made them a prime candidate for food, pharmaceutical, and chemical industrial applications. With this paper, it is possible to see that biodegradable polymers are promising materials, mainly for reducing the pollution produced by polymers derived from petroleum.

摘要

合成聚合物的使用日益增加及其处置问题引发了人们对其对环境不利影响的担忧。因此,人们一直在寻找合成塑料的其他可持续替代品,例如聚羟基脂肪酸酯(PHA),这是一种很有前景的微生物聚酯,主要是因为它们具有可堆肥性、生物相容性、热稳定性和弹性,使得这种生物聚合物在全球市场的多种应用中都可接受。与传统塑料相比,微生物大规模生产PHA仍受生产成本高昂的限制。本综述报告了文献中提到的一些旨在生产和回收的策略,为生物基经济铺平道路。为此,探讨了PHA的一些方面,如合成、生产系统、利用工业副产品进行过程控制以及下游的进展和挑战。生物塑料的特性使其成为食品、制药和化工行业应用的主要候选材料。通过本文可以看出,可生物降解聚合物是很有前景的材料,主要用于减少石油衍生聚合物产生的污染。

相似文献

1
Recent updates to microbial production and recovery of polyhydroxyalkanoates.
3 Biotech. 2023 Jun;13(6):204. doi: 10.1007/s13205-023-03633-9. Epub 2023 May 21.
2
Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications.
Chemosphere. 2022 May;294:133723. doi: 10.1016/j.chemosphere.2022.133723. Epub 2022 Jan 24.
3
Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements.
Int J Biol Macromol. 2016 Aug;89:161-74. doi: 10.1016/j.ijbiomac.2016.04.069. Epub 2016 Apr 25.
4
The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis.
Curr Pharm Des. 2023;29(39):3089-3102. doi: 10.2174/0113816128263175231102061920.
6
Microbial cell factories for the production of polyhydroxyalkanoates.
Essays Biochem. 2021 Jul 26;65(2):337-353. doi: 10.1042/EBC20200142.
7
Bacterial production of the biodegradable plastics polyhydroxyalkanoates.
Int J Biol Macromol. 2014 Sep;70:208-13. doi: 10.1016/j.ijbiomac.2014.06.001. Epub 2014 Jun 26.
8
PHA-Based Bioplastic: a Potential Alternative to Address Microplastic Pollution.
Water Air Soil Pollut. 2023;234(1):21. doi: 10.1007/s11270-022-06029-2. Epub 2022 Dec 29.
9
Trends in PHA Production by Microbially Diverse and Functionally Distinct Communities.
Microb Ecol. 2023 Feb;85(2):572-585. doi: 10.1007/s00248-022-01995-w. Epub 2022 Mar 25.
10
Sustainable applications of polyhydroxyalkanoates in various fields: A critical review.
Int J Biol Macromol. 2022 Nov 30;221:1184-1201. doi: 10.1016/j.ijbiomac.2022.09.098. Epub 2022 Sep 14.

引用本文的文献

1
Bio-electrosynthesis of polyhydroxybutyrate and surfactants in microbial fuel cells: a preliminary study.
Front Microbiol. 2025 Feb 25;16:1372302. doi: 10.3389/fmicb.2025.1372302. eCollection 2025.
2
Green Synthesis of Bioplastics from Microalgae: A State-of-the-Art Review.
Polymers (Basel). 2024 May 8;16(10):1322. doi: 10.3390/polym16101322.
3
Physicochemical cell disruption of sp. for recovery of polyhydroxyalkanoates: future bioplastic for sustainability.
3 Biotech. 2024 Feb;14(2):59. doi: 10.1007/s13205-024-03913-y. Epub 2024 Feb 2.

本文引用的文献

2
Native feedstock options for the polyhydroxyalkanoate industry in Europe: A review.
Microbiol Res. 2022 Nov;264:127177. doi: 10.1016/j.micres.2022.127177. Epub 2022 Aug 28.
3
Valorization of lignocellulosic biomass for polyhydroxyalkanoate production: Status and perspectives.
Bioresour Technol. 2022 Sep;360:127575. doi: 10.1016/j.biortech.2022.127575. Epub 2022 Jul 2.
5
Efficiently unsterile polyhydroxyalkanoate production from lignocellulose by using alkali-halophilic Halomonas alkalicola M2.
Bioresour Technol. 2022 May;351:126919. doi: 10.1016/j.biortech.2022.126919. Epub 2022 Feb 28.
6
Bioplastics for a circular economy.
Nat Rev Mater. 2022;7(2):117-137. doi: 10.1038/s41578-021-00407-8. Epub 2022 Jan 20.
7
Engineering Cupriavidus necator DSM 545 for the one-step conversion of starchy waste into polyhydroxyalkanoates.
Bioresour Technol. 2022 Mar;347:126383. doi: 10.1016/j.biortech.2021.126383. Epub 2021 Nov 19.
8
Biotechnological Conversion of Grape Pomace to Poly(3-hydroxybutyrate) by Moderately Thermophilic Bacterium .
Bioengineering (Basel). 2021 Oct 14;8(10):141. doi: 10.3390/bioengineering8100141.
9
Structural assessment of the bioplastic (poly-3-hydroxybutyrate) produced by Bacillus flexus Azu-A2 through cheese whey valorization.
Int J Biol Macromol. 2021 Nov 1;190:319-332. doi: 10.1016/j.ijbiomac.2021.08.090. Epub 2021 Aug 17.
10
Comparative analysis of various extraction processes based on economy, eco-friendly, purity and recovery of polyhydroxyalkanoate: A review.
Int J Biol Macromol. 2021 Jul 31;183:1881-1890. doi: 10.1016/j.ijbiomac.2021.06.007. Epub 2021 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验