Suppr超能文献

美国专利:用于在微调标准胎儿平面查找期间进行超声探头运动估计的自监督兴趣点检测与描述

USPoint: Self-Supervised Interest Point Detection and Description for Ultrasound-Probe Motion Estimation During Fine-Adjustment Standard Fetal Plane Finding.

作者信息

Zhao Cheng, Droste Richard, Drukker Lior, Papageorghiou Aris T, Alison Noble J

机构信息

Institute of Biomedical Engineering, University of Oxford, Oxford, UK.

Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK.

出版信息

Med Image Comput Comput Assist Interv. 2022 Sep 17;2022:104-114. doi: 10.1007/978-3-031-16449-1_11.

Abstract

Ultrasound (US)-probe motion estimation is a fundamental problem in automated standard plane locating during obstetric US diagnosis. Most recent existing recent works employ deep neural network (DNN) to regress the probe motion. However, these deep regressionbased methods leverage the DNN to overfit on the specific training data, which is naturally lack of generalization ability for the clinical application. In this paper, we are back to generalized US feature learning rather than deep parameter regression. We propose a self-supervised learned local detector and descriptor, named USPoint, for US-probe motion estimation during the fine-adjustment phase of fetal plane acquisition. Specifically, a hybrid neural architecture is designed to simultaneously extract a local feature, and further estimate the probe motion. By embedding a differentiable USPoint-based motion estimation inside the proposed network architecture, the USPoint learns the keypoint detector, scores and descriptors from motion error alone, which doesn't require expensive human-annotation of local features. The two tasks, local feature learning and motion estimation, are jointly learned in a unified framework to enable collaborative learning with the aim of mutual benefit. To the best of our knowledge, it is the first learned local detector and descriptor tailored for the US image. Experimental evaluation on real clinical data demonstrates the resultant performance improvement on feature matching and motion estimation for potential clinical value. A video demo can be found online: https://youtu.be/JGzHuTQVlBs.

摘要

超声(US)探头运动估计是产科超声诊断中自动标准平面定位的一个基本问题。最近的现有工作大多采用深度神经网络(DNN)来回归探头运动。然而,这些基于深度回归的方法利用DNN在特定训练数据上过度拟合,这自然缺乏临床应用的泛化能力。在本文中,我们回归到广义超声特征学习,而不是深度参数回归。我们提出了一种自监督学习的局部检测器和描述符,名为USPoint,用于胎儿平面采集微调阶段的超声探头运动估计。具体来说,设计了一种混合神经架构,以同时提取局部特征,并进一步估计探头运动。通过在所提出的网络架构中嵌入基于可微USPoint的运动估计,USPoint仅从运动误差中学习关键点检测器、分数和描述符,这不需要对局部特征进行昂贵的人工标注。局部特征学习和运动估计这两个任务在一个统一的框架中联合学习,以实现互利的协同学习。据我们所知,这是第一个为超声图像量身定制的学习型局部检测器和描述符。对真实临床数据的实验评估证明了在特征匹配和运动估计方面的性能提升,具有潜在的临床价值。在线视频演示可在以下网址找到:https://youtu.be/JGzHuTQVlBs。

相似文献

2
Visual-Assisted Probe Movement Guidance for Obstetric Ultrasound Scanning using Landmark Retrieval.
Med Image Comput Comput Assist Interv. 2021 Sep 21;12908:670-679. doi: 10.1007/978-3-030-87237-3_64.
3
Combining MRF-based deformable registration and deep binary 3D-CNN descriptors for large lung motion estimation in COPD patients.
Int J Comput Assist Radiol Surg. 2019 Jan;14(1):43-52. doi: 10.1007/s11548-018-1888-2. Epub 2018 Nov 14.
4
Perspectively Equivariant Keypoint Learning for Omnidirectional Images.
IEEE Trans Image Process. 2023;32:2552-2567. doi: 10.1109/TIP.2023.3270032. Epub 2023 May 5.
5
Learning 3D medical image keypoint descriptors with the triplet loss.
Int J Comput Assist Radiol Surg. 2022 Jan;17(1):141-146. doi: 10.1007/s11548-021-02481-3. Epub 2021 Aug 27.
6
MR-self Noise2Noise: self-supervised deep learning-based image quality improvement of submillimeter resolution 3D MR images.
Eur Radiol. 2023 Apr;33(4):2686-2698. doi: 10.1007/s00330-022-09243-y. Epub 2022 Nov 15.
7
Self-Supervised monocular depth and ego-Motion estimation in endoscopy: Appearance flow to the rescue.
Med Image Anal. 2022 Apr;77:102338. doi: 10.1016/j.media.2021.102338. Epub 2021 Dec 25.
8
Tiller estimation method using deep neural networks.
Front Plant Sci. 2023 Jan 13;13:1016507. doi: 10.3389/fpls.2022.1016507. eCollection 2022.
9
Self-Supervised Point Set Local Descriptors for Point Cloud Registration.
Sensors (Basel). 2021 Jan 12;21(2):486. doi: 10.3390/s21020486.

引用本文的文献

1
Gaze-probe joint guidance with multi-task learning in obstetric ultrasound scanning.
Med Image Anal. 2023 Dec;90:102981. doi: 10.1016/j.media.2023.102981. Epub 2023 Sep 29.

本文引用的文献

1
Visual-Assisted Probe Movement Guidance for Obstetric Ultrasound Scanning using Landmark Retrieval.
Med Image Comput Comput Assist Interv. 2021 Sep 21;12908:670-679. doi: 10.1007/978-3-030-87237-3_64.
2
Automatic Probe Movement Guidance for Freehand Obstetric Ultrasound.
Med Image Comput Comput Assist Interv. 2020 Oct;12263:583-592. doi: 10.1007/978-3-030-59716-0_56. Epub 2020 Sep 29.
3
3D freehand ultrasound without external tracking using deep learning.
Med Image Anal. 2018 Aug;48:187-202. doi: 10.1016/j.media.2018.06.003. Epub 2018 Jun 15.
4
Sensorless freehand 3D ultrasound in real tissue: speckle decorrelation without fully developed speckle.
Med Image Anal. 2006 Apr;10(2):137-49. doi: 10.1016/j.media.2005.08.001. Epub 2005 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验