Zhao Cheng, Droste Richard, Drukker Lior, Papageorghiou Aris T, Alison Noble J
Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK.
Med Image Comput Comput Assist Interv. 2022 Sep 17;2022:104-114. doi: 10.1007/978-3-031-16449-1_11.
Ultrasound (US)-probe motion estimation is a fundamental problem in automated standard plane locating during obstetric US diagnosis. Most recent existing recent works employ deep neural network (DNN) to regress the probe motion. However, these deep regressionbased methods leverage the DNN to overfit on the specific training data, which is naturally lack of generalization ability for the clinical application. In this paper, we are back to generalized US feature learning rather than deep parameter regression. We propose a self-supervised learned local detector and descriptor, named USPoint, for US-probe motion estimation during the fine-adjustment phase of fetal plane acquisition. Specifically, a hybrid neural architecture is designed to simultaneously extract a local feature, and further estimate the probe motion. By embedding a differentiable USPoint-based motion estimation inside the proposed network architecture, the USPoint learns the keypoint detector, scores and descriptors from motion error alone, which doesn't require expensive human-annotation of local features. The two tasks, local feature learning and motion estimation, are jointly learned in a unified framework to enable collaborative learning with the aim of mutual benefit. To the best of our knowledge, it is the first learned local detector and descriptor tailored for the US image. Experimental evaluation on real clinical data demonstrates the resultant performance improvement on feature matching and motion estimation for potential clinical value. A video demo can be found online: https://youtu.be/JGzHuTQVlBs.
超声(US)探头运动估计是产科超声诊断中自动标准平面定位的一个基本问题。最近的现有工作大多采用深度神经网络(DNN)来回归探头运动。然而,这些基于深度回归的方法利用DNN在特定训练数据上过度拟合,这自然缺乏临床应用的泛化能力。在本文中,我们回归到广义超声特征学习,而不是深度参数回归。我们提出了一种自监督学习的局部检测器和描述符,名为USPoint,用于胎儿平面采集微调阶段的超声探头运动估计。具体来说,设计了一种混合神经架构,以同时提取局部特征,并进一步估计探头运动。通过在所提出的网络架构中嵌入基于可微USPoint的运动估计,USPoint仅从运动误差中学习关键点检测器、分数和描述符,这不需要对局部特征进行昂贵的人工标注。局部特征学习和运动估计这两个任务在一个统一的框架中联合学习,以实现互利的协同学习。据我们所知,这是第一个为超声图像量身定制的学习型局部检测器和描述符。对真实临床数据的实验评估证明了在特征匹配和运动估计方面的性能提升,具有潜在的临床价值。在线视频演示可在以下网址找到:https://youtu.be/JGzHuTQVlBs。