Kinose Rikuya, Utsumi Yuzuko, Iwamura Masakazu, Kise Koichi
Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan.
Graduate School of Informatics, Osaka Metropolitan University, Sakai, Japan.
Front Plant Sci. 2023 Jan 13;13:1016507. doi: 10.3389/fpls.2022.1016507. eCollection 2022.
This paper describes a method based on a deep neural network (DNN) for estimating the number of tillers on a plant. A tiller is a branch on a grass plant, and the number of tillers is one of the most important determinants of yield. Traditionally, the tiller number is usually counted by hand, and so an automated approach is necessary for high-throughput phenotyping. Conventional methods use heuristic features to estimate the tiller number. Based on the successful application of DNNs in the field of computer vision, the use of DNN-based features instead of heuristic features is expected to improve the estimation accuracy. However, as DNNs generally require large volumes of data for training, it is difficult to apply them to estimation problems for which large training datasets are unavailable. In this paper, we use two strategies to overcome the problem of insufficient training data: the use of a pretrained DNN model and the use of pretext tasks for learning the feature representation. We extract features using the resulting DNNs and estimate the tiller numbers through a regression technique. We conducted experiments using side-view whole plant images taken with plan backgroud. The experimental results show that the proposed methods using a pretrained model and specific pretext tasks achieve better performance than the conventional method.
本文描述了一种基于深度神经网络(DNN)的方法,用于估计植物上的分蘖数。分蘖是禾本科植物的一个分支,分蘖数是产量的最重要决定因素之一。传统上,分蘖数通常是人工计数,因此对于高通量表型分析来说,自动化方法是必要的。传统方法使用启发式特征来估计分蘖数。基于DNN在计算机视觉领域的成功应用,使用基于DNN的特征而非启发式特征有望提高估计精度。然而,由于DNN通常需要大量数据进行训练,因此难以将其应用于没有大量训练数据集的估计问题。在本文中,我们使用两种策略来克服训练数据不足的问题:使用预训练的DNN模型和使用前置任务来学习特征表示。我们使用得到的DNN提取特征,并通过回归技术估计分蘖数。我们使用以平面背景拍摄的侧视整株植物图像进行了实验。实验结果表明,使用预训练模型和特定前置任务的所提方法比传统方法具有更好的性能。