Suppr超能文献

基于多任务学习的产科超声扫描中注视-探头联合引导

Gaze-probe joint guidance with multi-task learning in obstetric ultrasound scanning.

机构信息

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom.

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom.

出版信息

Med Image Anal. 2023 Dec;90:102981. doi: 10.1016/j.media.2023.102981. Epub 2023 Sep 29.

Abstract

In this work, we exploit multi-task learning to jointly predict the two decision-making processes of gaze movement and probe manipulation that an experienced sonographer would perform in routine obstetric scanning. A multimodal guidance framework, Multimodal-GuideNet, is proposed to detect the causal relationship between a real-world ultrasound video signal, synchronized gaze, and probe motion. The association between the multi-modality inputs is learned and shared through a modality-aware spatial graph that leverages useful cross-modal dependencies. By estimating the probability distribution of probe and gaze movements in real scans, the predicted guidance signals also allow inter- and intra-sonographer variations and avoid a fixed scanning path. We validate the new multi-modality approach on three types of obstetric scanning examinations, and the result consistently outperforms single-task learning under various guidance policies. To simulate sonographer's attention on multi-structure images, we also explore multi-step estimation in gaze guidance, and its visual results show that the prediction allows multiple gaze centers that are substantially aligned with underlying anatomical structures.

摘要

在这项工作中,我们利用多任务学习来联合预测经验丰富的超声医师在常规产科扫描中执行的两种决策过程,即眼球运动和探头操作。提出了一种多模态引导框架 Multimodal-GuideNet,用于检测真实世界超声视频信号、同步注视和探头运动之间的因果关系。通过利用有用的跨模态依赖关系的模态感知空间图,学习和共享多模态输入之间的关联。通过估计真实扫描中探头和眼球运动的概率分布,预测的引导信号还允许不同医师之间和同一医师内的变化,并避免固定的扫描路径。我们在三种类型的产科扫描检查中验证了新的多模态方法,结果在各种引导策略下始终优于单任务学习。为了模拟超声医师对多结构图像的注意力,我们还探索了注视引导中的多步估计,其视觉结果表明,该预测允许多个注视中心,这些中心与潜在的解剖结构基本对齐。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fae9/7615231/8ee30265781b/EMS189629-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验