Ford Amy, Breitgoff Frauke, Pasquini Miriam, MacKenzie Amanda, McElroy Stuart, Baker Steve, Abrusci Patrizia, Varzandeh Simon, Bird Louise, Gavard Angeline, Damerell David, Redhead Martin
Exscientia, The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, UK.
Bioascent, Bo'Ness Road, Chapelhall, Motherwell ML1 5SH, UK.
Patterns (N Y). 2023 Apr 21;4(5):100733. doi: 10.1016/j.patter.2023.100733. eCollection 2023 May 12.
Understanding a drug candidate's mechanism of action is crucial for its further development. However, kinetic schemes are often complex and multi-parametric, especially for proteins in oligomerization equilibria. Here, we demonstrate the use of particle swarm optimization (PSO) as a method to select between different sets of parameters that are too far apart in the parameter space to be found by conventional approaches. PSO is based upon the swarming of birds: each bird in the flock assesses multiple landing spots while at the same time sharing that information with its neighbors. We applied this approach to the kinetics of HSD17β13 enzyme inhibitors, which displayed unusually large thermal shifts. Thermal shift data for HSD17β13 indicated that the inhibitor shifted the oligomerization equilibrium toward the dimeric state. Validation of the PSO approach was provided by experimental mass photometry data. These results encourage further exploration of multi-parameter optimization algorithms as tools in drug discovery.
了解候选药物的作用机制对其进一步开发至关重要。然而,动力学方案通常很复杂且具有多个参数,特别是对于处于寡聚化平衡状态的蛋白质。在此,我们展示了使用粒子群优化算法(PSO)作为一种方法,用于在不同参数集之间进行选择,这些参数集在参数空间中相距甚远,传统方法难以找到。PSO基于鸟类群体行为:鸟群中的每只鸟评估多个着陆点,同时与邻居分享该信息。我们将此方法应用于HSD17β13酶抑制剂的动力学研究,该抑制剂显示出异常大的热位移。HSD17β13的热位移数据表明,该抑制剂使寡聚化平衡向二聚体状态移动。实验性质量光度法数据为PSO方法提供了验证。这些结果鼓励进一步探索多参数优化算法作为药物发现中的工具。