Suppr超能文献

全局对称性信号对于乳腺X光片中的异常检测很重要。

Signals of global symmetry are important for abnormality detection in mammograms.

作者信息

Kyle-Davidson Cameron, Rakusen Lyndon L, Raat Emma, Bradley Roisin, Evans Karla K

机构信息

University of York, Department of Psychology, York, United Kingdom.

York and Scarborough Teaching Hospitals NHS Foundation Trust, York, United Kingdom.

出版信息

J Med Imaging (Bellingham). 2023 Feb;10(Suppl 1):S11912. doi: 10.1117/1.JMI.10.S1.S11912. Epub 2023 May 22.

Abstract

PURPOSE

Expert radiologists can detect the "gist of abnormal" in bilateral mammograms even three years prior to onset of cancer. However, their performance decreases if both breasts are not from the same woman, suggesting the ability to detect the abnormality is partly dependent on a global signal present across the two breasts. We aim to detect this implicitly perceived "symmetry" signal by examining its effect on a pre-trained mammography model.

APPROACH

A deep neural network (DNN) with four mammogram view inputs was developed to predict whether the mammograms come from one woman, or two different women as the first step in investigating the symmetry signal. Mammograms were balanced by size, age, density, and machine type. We then evaluated a cancer detection DNN's performance on mammograms from the same and different women. Finally, we used textural analysis methods to further explain the symmetry signal.

RESULTS

The developed DNN can detect whether a set of mammograms come from the same or different woman with a base accuracy of 61%. Indeed, a DNN shown mammograms swapped either contralateral or abnormal with a normal mammogram from another woman, resulted in performance decreases. Findings indicate that abnormalities induce a disruption in global mammogram structure resulting in the break in the critical symmetry signal.

CONCLUSION

The global symmetry signal is a textural signal embedded in the parenchyma of bilateral mammograms, which can be extracted. The presence of abnormalities alters textural similarities between the left and right breasts and contributes to the "medical gist signal."

摘要

目的

专业放射科医生甚至在癌症发病前三年就能在双侧乳房X光片中检测到“异常要点”。然而,如果双侧乳房不是来自同一女性,他们的表现就会下降,这表明检测异常的能力部分取决于双侧乳房中存在的全局信号。我们旨在通过检查其对预训练乳房X光模型的影响来检测这种隐含感知到的“对称”信号。

方法

开发了一种具有四个乳房X光视图输入的深度神经网络(DNN),以预测乳房X光片是来自一名女性还是两名不同女性,作为研究对称信号的第一步。乳房X光片按尺寸、年龄、密度和机器类型进行了平衡。然后,我们评估了癌症检测DNN在来自同一女性和不同女性的乳房X光片上的性能。最后,我们使用纹理分析方法进一步解释对称信号。

结果

开发的DNN能够以61%的基本准确率检测一组乳房X光片是来自同一女性还是不同女性。实际上,当DNN显示的乳房X光片与另一名女性的正常乳房X光片进行对侧或异常交换时,性能会下降。研究结果表明,异常会导致全局乳房X光结构的破坏,从而导致关键对称信号的中断。

结论

全局对称信号是一种嵌入在双侧乳房X光实质中的纹理信号,可以被提取出来。异常的存在会改变左右乳房之间的纹理相似性,并有助于形成“医学要点信号”。

相似文献

1
Signals of global symmetry are important for abnormality detection in mammograms.
J Med Imaging (Bellingham). 2023 Feb;10(Suppl 1):S11912. doi: 10.1117/1.JMI.10.S1.S11912. Epub 2023 May 22.
2
Using global feedback to induce learning of gist of abnormality in mammograms.
Cogn Res Princ Implic. 2023 Jan 8;8(1):3. doi: 10.1186/s41235-022-00457-8.
4
A half-second glimpse often lets radiologists identify breast cancer cases even when viewing the mammogram of the opposite breast.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10292-7. doi: 10.1073/pnas.1606187113. Epub 2016 Aug 29.
5
Early signs of cancer present in the fine detail of mammograms.
PLoS One. 2023 Apr 5;18(4):e0282872. doi: 10.1371/journal.pone.0282872. eCollection 2023.
6
Comparable prediction of breast cancer risk from a glimpse or a first impression of a mammogram.
Cogn Res Princ Implic. 2021 Nov 6;6(1):72. doi: 10.1186/s41235-021-00339-5.
7
Radiologists can detect the 'gist' of breast cancer before any overt signs of cancer appear.
Sci Rep. 2018 Jun 7;8(1):8717. doi: 10.1038/s41598-018-26100-5.
9
Identifying Women With Mammographically- Occult Breast Cancer Leveraging GAN-Simulated Mammograms.
IEEE Trans Med Imaging. 2022 Jan;41(1):225-236. doi: 10.1109/TMI.2021.3108949. Epub 2021 Dec 30.
10
Detecting the "gist" of breast cancer in mammograms three years before localized signs of cancer are visible.
Br J Radiol. 2019 Jul;92(1099):20190136. doi: 10.1259/bjr.20190136. Epub 2019 Jun 5.

本文引用的文献

1
Using global feedback to induce learning of gist of abnormality in mammograms.
Cogn Res Princ Implic. 2023 Jan 8;8(1):3. doi: 10.1186/s41235-022-00457-8.
2
Melanoma in the Blink of an Eye: Pathologists' Rapid Detection, Classification, and Localization of Skin Abnormalities.
Vis cogn. 2021;29(6):386-400. doi: 10.1080/13506285.2021.1943093. Epub 2021 Jun 16.
3
Understanding breast cancer as a global health concern.
Br J Radiol. 2022 Feb 1;95(1130):20211033. doi: 10.1259/bjr.20211033. Epub 2021 Dec 14.
4
European trends in breast cancer mortality, 1980-2017 and predictions to 2025.
Eur J Cancer. 2021 Jul;152:4-17. doi: 10.1016/j.ejca.2021.04.026. Epub 2021 May 29.
5
Toward robust mammography-based models for breast cancer risk.
Sci Transl Med. 2021 Jan 27;13(578). doi: 10.1126/scitranslmed.aba4373.
6
Missed Breast Cancer: Effects of Subconscious Bias and Lesion Characteristics.
Radiographics. 2020 Jul-Aug;40(4):941-960. doi: 10.1148/rg.2020190090. Epub 2020 Jun 12.
7
Rapid perceptual processing in two- and three-dimensional prostate images.
J Med Imaging (Bellingham). 2020 Mar;7(2):022406. doi: 10.1117/1.JMI.7.2.022406. Epub 2020 Jan 3.
8
Breast Cancer Screening and Diagnosis: A Synopsis of the European Breast Guidelines.
Ann Intern Med. 2020 Jan 7;172(1):46-56. doi: 10.7326/M19-2125. Epub 2019 Nov 26.
9
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening.
IEEE Trans Med Imaging. 2020 Apr;39(4):1184-1194. doi: 10.1109/TMI.2019.2945514. Epub 2019 Oct 7.
10
Detecting the "gist" of breast cancer in mammograms three years before localized signs of cancer are visible.
Br J Radiol. 2019 Jul;92(1099):20190136. doi: 10.1259/bjr.20190136. Epub 2019 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验