Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Jameel Clinic, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Sci Transl Med. 2021 Jan 27;13(578). doi: 10.1126/scitranslmed.aba4373.
Improved breast cancer risk models enable targeted screening strategies that achieve earlier detection and less screening harm than existing guidelines. To bring deep learning risk models to clinical practice, we need to further refine their accuracy, validate them across diverse populations, and demonstrate their potential to improve clinical workflows. We developed Mirai, a mammography-based deep learning model designed to predict risk at multiple timepoints, leverage potentially missing risk factor information, and produce predictions that are consistent across mammography machines. Mirai was trained on a large dataset from Massachusetts General Hospital (MGH) in the United States and tested on held-out test sets from MGH, Karolinska University Hospital in Sweden, and Chang Gung Memorial Hospital (CGMH) in Taiwan, obtaining C-indices of 0.76 (95% confidence interval, 0.74 to 0.80), 0.81 (0.79 to 0.82), and 0.79 (0.79 to 0.83), respectively. Mirai obtained significantly higher 5-year ROC AUCs than the Tyrer-Cuzick model ( < 0.001) and prior deep learning models Hybrid DL ( < 0.001) and Image-Only DL ( < 0.001), trained on the same dataset. Mirai more accurately identified high-risk patients than prior methods across all datasets. On the MGH test set, 41.5% (34.4 to 48.5) of patients who would develop cancer within 5 years were identified as high risk, compared with 36.1% (29.1 to 42.9) by Hybrid DL ( = 0.02) and 22.9% (15.9 to 29.6) by the Tyrer-Cuzick model ( < 0.001).
改良的乳腺癌风险模型能够实现更精准的靶向筛查策略,相较于现有的指南,这些策略能更早地发现肿瘤并减少筛查带来的危害。为了将深度学习风险模型应用于临床实践,我们需要进一步提高其准确性,在不同人群中验证其有效性,并证明其有改善临床工作流程的潜力。我们开发了 Mirai,这是一个基于乳腺 X 线摄影的深度学习模型,旨在预测多个时间点的风险,利用潜在缺失的风险因素信息,并生成跨乳腺 X 线摄影设备一致的预测结果。Mirai 在美国马萨诸塞州综合医院 (MGH) 的大型数据集上进行了训练,并在 MGH、瑞典卡罗林斯卡大学医院和中国台湾长庚纪念医院的独立测试集上进行了测试,其 C 指数分别为 0.76(95%置信区间,0.74 至 0.80)、0.81(0.79 至 0.82)和 0.79(0.79 至 0.83)。与 Tyrer-Cuzick 模型相比,Mirai 的 5 年 ROC AUC 显著更高( < 0.001),也显著高于基于相同数据集训练的 Hybrid DL( < 0.001)和 Image-Only DL( < 0.001)两种深度学习模型。在所有数据集上,Mirai 都比以前的方法更准确地识别出高风险患者。在 MGH 测试集上,41.5%(34.4 至 48.5)在未来 5 年内会发生癌症的患者被识别为高风险患者,而 Hybrid DL 识别出的高风险患者比例为 36.1%(29.1 至 42.9)( = 0.02),Tyrer-Cuzick 模型识别出的高风险患者比例为 22.9%(15.9 至 29.6)( < 0.001)。