Li Mengfan, Wei Ran, Zhang Ziqi, Zhang Pengfei, Xu Guizhi, Liao Wenzhe
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, China.
Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, 300132 Tianjin, China.
Cyborg Bionic Syst. 2023 Apr 18;4:0024. doi: 10.34133/cbsystems.0024. eCollection 2023.
Brain-computer interface (BCI) is a typical direction of integration of human intelligence and robot intelligence. Shared control is an essential form of combining human and robot agents in a common task, but still faces a lack of freedom for the human agent. This paper proposes a Centroidal Voronoi Tessellation (CVT)-based road segmentation approach for brain-controlled robot navigation by means of asynchronous BCI. An electromyogram-based asynchronous mechanism is introduced into the BCI system for self-paced control. A novel CVT-based road segmentation method is provided to generate optional navigation goals in the road area for arbitrary goal selection. An event-related potential of the BCI is designed for target selection to communicate with the robot. The robot has an autonomous navigation function to reach the human selected goals. A comparison experiment in the single-step control pattern is executed to verify the effectiveness of the CVT-based asynchronous (CVT-A) BCI system. Eight subjects participated in the experiment, and they were instructed to control the robot to navigate toward a destination with obstacle avoidance tasks. The results show that the CVT-A BCI system can shorten the task duration, decrease the command times, and optimize navigation path, compared with the single-step pattern. Moreover, this shared control mechanism of the CVT-A BCI system contributes to the promotion of human and robot agent integration control in unstructured environments.
脑机接口(BCI)是人类智能与机器人智能融合的一个典型方向。共享控制是人类与机器人在共同任务中协作的一种重要形式,但人类在其中仍面临自由度不足的问题。本文提出了一种基于质心 Voronoi 镶嵌(CVT)的道路分割方法,用于通过异步 BCI 实现脑控机器人导航。将基于肌电图的异步机制引入 BCI 系统以实现自定步速控制。提供了一种新颖的基于 CVT 的道路分割方法,用于在道路区域生成可选导航目标以供任意目标选择。设计了一种 BCI 的事件相关电位用于目标选择以与机器人通信。机器人具有自主导航功能以到达人类选择的目标。执行了单步控制模式下的对比实验以验证基于 CVT 的异步(CVT-A)BCI 系统的有效性。八名受试者参与了实验,他们被要求控制机器人在避障任务的情况下导航至目的地。结果表明,与单步模式相比,CVT-A BCI 系统可以缩短任务持续时间、减少指令次数并优化导航路径。此外,CVT-A BCI 系统的这种共享控制机制有助于促进非结构化环境中人类与机器人的集成控制。