Pei Yu, Luo Zhiguo, Yan Ye, Yan Huijiong, Jiang Jing, Li Weiguo, Xie Liang, Yin Erwei
School of Software, Beihang University, Beijing, China.
Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin, China.
Front Hum Neurosci. 2021 Mar 11;15:645952. doi: 10.3389/fnhum.2021.645952. eCollection 2021.
The quality and quantity of training data are crucial to the performance of a deep-learning-based brain-computer interface (BCI) system. However, it is not practical to record EEG data over several long calibration sessions. A promising time- and cost-efficient solution is artificial data generation or data augmentation (DA). Here, we proposed a DA method for the motor imagery (MI) EEG signal called brain-area-recombination (BAR). For the BAR, each sample was first separated into two ones (named half-sample) by left/right brain channels, and the artificial samples were generated by recombining the half-samples. We then designed two schemas (intra- and adaptive-subject schema) corresponding to the single- and multi-subject scenarios. Extensive experiments using the classifier of EEGnet were conducted on two public datasets under various training set sizes. In both schemas, the BAR method can make the EEGnet have a better performance of classification ( < 0.01). To make a comparative investigation, we selected two common DA methods (noise-added and flipping), and the BAR method beat them ( < 0.05). Further, using the proposed BAR for augmentation, EEGnet achieved up to 8.3% improvement than a typical decoding algorithm CSP-SVM ( < 0.01), note that both the models were trained on the augmented dataset. This study shows that BAR usage can significantly improve the classification ability of deep learning to MI-EEG signals. To a certain extent, it may promote the development of deep learning technology in the field of BCI.
训练数据的质量和数量对于基于深度学习的脑机接口(BCI)系统的性能至关重要。然而,在多个长时间的校准过程中记录脑电图(EEG)数据并不实际。一种有前景的节省时间和成本的解决方案是人工数据生成或数据增强(DA)。在此,我们提出了一种用于运动想象(MI)脑电信号的数据增强方法,称为脑区重组(BAR)。对于BAR,每个样本首先通过左/右脑通道被分离为两个样本(称为半样本),然后通过重新组合半样本生成人工样本。然后,我们设计了两种模式(个体内和自适应个体模式),分别对应单个体和多个体场景。在两个公共数据集上,针对不同训练集大小,使用EEGnet分类器进行了广泛实验。在两种模式下,BAR方法都能使EEGnet具有更好的分类性能(<0.01)。为了进行对比研究,我们选择了两种常见的数据增强方法(添加噪声和翻转),BAR方法优于它们(<0.05)。此外,使用所提出的BAR进行增强,与典型的解码算法CSP - SVM相比,EEGnet实现了高达8.3%的提升(<0.01),请注意,两个模型都是在增强后的数据集上进行训练的。本研究表明,使用BAR可以显著提高深度学习对MI脑电信号的分类能力。在一定程度上,它可能会促进深度学习技术在BCI领域的发展。