Suppr超能文献

对一个逻辑调控网络的分析揭示了在面对压力时铁硫簇生物合成是如何受到控制的。

Analysis of a logical regulatory network reveals how Fe-S cluster biogenesis is controlled in the face of stress.

作者信息

Hammami Firas, Tichit Laurent, Py Béatrice, Barras Frédéric, Mandin Pierre, Remy Elisabeth

机构信息

Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, CNRS, Aix-Marseille University, 13009 Marseille, France.

I2M, CNRS, Aix-Marseille University, 13009 Marseille, France.

出版信息

Microlife. 2023 Mar 2;4:uqad003. doi: 10.1093/femsml/uqad003. eCollection 2023.

Abstract

Iron-sulfur (Fe-S) clusters are important cofactors conserved in all domains of life, yet their synthesis and stability are compromised in stressful conditions such as iron deprivation or oxidative stress. Two conserved machineries, Isc and Suf, assemble and transfer Fe-S clusters to client proteins. The model bacterium possesses both Isc and Suf, and in this bacterium utilization of these machineries is under the control of a complex regulatory network. To better understand the dynamics behind Fe-S cluster biogenesis in , we here built a logical model describing its regulatory network. This model comprises three biological processes: 1) Fe-S cluster biogenesis, containing Isc and Suf, the carriers NfuA and ErpA, and the transcription factor IscR, the main regulator of Fe-S clusters homeostasis; 2) iron homeostasis, containing the free intracellular iron regulated by the iron sensing regulator Fur and the non-coding regulatory RNA RyhB involved in iron sparing; 3) oxidative stress, representing intracellular HO accumulation, which activates OxyR, the regulator of catalases and peroxidases that decompose HO and limit the rate of the Fenton reaction. Analysis of this comprehensive model reveals a modular structure that displays five different types of system behaviors depending on environmental conditions, and provides a better understanding on how oxidative stress and iron homeostasis combine and control Fe-S cluster biogenesis. Using the model, we were able to predict that an mutant would present growth defects in iron starvation due to partial inability to build Fe-S clusters, and we validated this prediction experimentally.

摘要

铁硫(Fe-S)簇是在生命的所有领域中都保守的重要辅因子,然而在诸如铁缺乏或氧化应激等应激条件下,它们的合成和稳定性会受到损害。两种保守机制,即Isc和Suf,负责组装Fe-S簇并将其转移到客户蛋白上。模式细菌同时拥有Isc和Suf,并且在这种细菌中,这些机制的利用受复杂调控网络的控制。为了更好地理解模式细菌中铁硫簇生物合成背后的动态过程,我们在此构建了一个描述其调控网络的逻辑模型。该模型包括三个生物学过程:1)Fe-S簇生物合成,包含Isc和Suf、载体NfuA和ErpA以及转录因子IscR,Fe-S簇稳态的主要调节因子;2)铁稳态,包含由铁感应调节因子Fur调节的细胞内游离铁以及参与铁节约的非编码调节RNA RyhB;3)氧化应激,代表细胞内HO的积累,其激活OxyR,OxyR是分解HO并限制芬顿反应速率的过氧化氢酶和过氧化物酶的调节因子。对这个综合模型的分析揭示了一种模块化结构,该结构根据环境条件显示出五种不同类型的系统行为,并能更好地理解氧化应激和铁稳态如何结合并控制Fe-S簇生物合成。使用该模型,我们能够预测一个突变体由于部分无法构建Fe-S簇而在铁饥饿状态下会出现生长缺陷,并且我们通过实验验证了这一预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d4/10117729/78efb8b7eb88/uqad003fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验